Guilhem de WAILLY

Fernand BOERI, Senior Member IEEE

Théme Architectures Logicielles et Materielles
Laboratoire d’Informatique, Signaux et Systémes
URA 1376 du CNRS et de I’Université de Nice - Sophia Antipolis
41, bd Napolélon III - 06041 - Nice CEDEX - France
http://alto.unice.fr/~gdw boeriQunice.fr

KEYWORDS

denotational semantics, data-flow, parallelism

ABSTRACT

In this paper, a semantic description of an abstract lan-
guage using a functional synchronous data-flow (FSDF)
paradigm is defined. This work is intended to imple-
ment signal processing applications in parallel architec-
tures. This language 1s as simple as possible.

Some properties are defined, such as time and memory
determinisms. In order to establish these properties, cri-
terion functions are established. Relations between prop-
erties and criterion functions are proven (these proofs are
not in this paper).

Systems are solved with a fully functional abstract ma-
chine which allows a great parallelism exploitation. Par-
allel accesses to the common memory can be statically
shared among processors. It results in a cheap and simple
parallel architecture without any conflicts management.

1 MOTIVATIONS

A signal processing CAD tool must have an accurate spec-
ification language and allow fast implementations. Imple-
mentations must be time and memory deterministic.

In order to prove programs and behaviors, the specifi-
cation language must be functional [2, 15]. Its semantics
has to be as transparent as possible to the designer. A
graphical representation of applications is welcome: sig-
nal processing applications are often thought in terms of
boxes (operators) and lines (data paths).

Parallel architectures are expected to be fast. Data-
flow modeling preserves inner parallelism of applications.
The data-flow language LUCID [1] shows that iterative pro-
grams can efficiently be translated into data-flow.

LEE introduced the Synchronous Data-Flow
model [16], which focuses on the communications of differ-
ent clocked processes in a memory-deterministic way, but
it is not functional. The three following languages are all
data-flow like, functional and time/memory determinis-
tic. SISAL [11] was especially intented for efficient parallel
implementations. Later, LUSTRE [13] has been defined to
deal with real-time and reactive systems. SIGNAL [3] was
designed for signal processing. It has a powerful modular-
ity tool. Both LUSTRE and SIGNAL are built upon clocks
defined into the core language.

A-matrices, the concept developed here, can be seen
as a primitive functional [5] abstract language of the lan-
guages above. It is specified with the denotational se-
mantics [17]. Followed-by is the only temporal opera-
tor, which allows all other temporal constructions. Note

that its semantics differs from the one used in the lan-
guages above. Hence, clocks can be implemented with

alternatives and streams, so they are not defined.

Due to the func-
GRAPHICAL INTERFACE
tranglator |

tional feature and the
ac-)
curate semantics, pro-

SYNTACTIC LANGUAGE)
lexical & syntactic analysis) gra‘ni)s and be}i_?VIOI'S
SEMANTIC LANGUAGE j can be prover}. ence,

code production] STaNic analysis some properties of the

A-matrices are defined,
such as closure, calcu-
lability and stability.
These properties are es-
tablished in a proven
way by the use of cri-
terion functions [10].
So, the solving process
is time-memory deter-

ministic. A-matrices
are expected to be effi-

ciently implemented onto a specific parallel architecture
model, due to the particular solving method [8]. They can
be statically compiled [12], and the sharing of the common
memory is fixed at compile-time. Parallel architecture be-
comes very simple without any conflicts management.

This article gives the full semantics description of A-
matrices. This work is the semantics aspect of a CAD
tool chain shown in figure 1. This paper only focuses on
the denotational description of the language, its solving
machine and the criterion functions.

First, an example is given (§ 2): it implements a sim-
ple second-order recursive filter with A-matrices language,
and shows concisely that the solving method is suitable
for parallelism exploitation (§ 2.5). The abstract language
is introduced in an informal way (§ 3), followed by its de-
notational definitions (§ 4). Then, the functional abstract
solving machine is described (§ 5), followed by the crite-

MACHINE LANGUAGE
parallelizer |
PARALLEL LANGUAGE | parallel code
s N

IMPLEMENTATIONS [hardware simulator

Figure 1: A CAD tool chain for
parallel implementations of sig-
nal processing applications.

rion functions (§ 6). Then, we explain briefly why the
solving process is time/memory deterministic. At last,
some extensions of the A-matrices (§ 8) are described.

2 EXAMPLE

This simple example shows how an application can be
translated into the A-matrices language. It has two parts:
the theoretical description of a simple signal processing
filter with Z-equations [14], and its translation into our

formalism.
C2
50

Figure 2: Second order recursive filter.

2.1 Theoretical description

Kagy g fafs

Tb? \,\
CD/‘\
o

s

A diagram of a second order recursive filter is shown
in figure 2. Its Z-equations are:

+htetd
1
g (1)

a
i
zZ~
a
c
71

© A0S RO
e II I

*e

The simplification of these equations (1) gives the transfer
function:

_0(z) _ 343z~ 14z—2
H(Z) = 777 = 1G2z=T4z=2"

(2)

Now, the recurrent time function can be deduced:

3)

The first values are calculated with input values i =
(i1,i2, cy Zn)

01 = 311

02 = 312 - 311

03 = 3i3 — 3ia + 4iq

04 = 3i4 — 3i3 + 4is — 5iq

o(t) = 3(t) +3i(t— 1) +i(t—2) —20(t— 1) — o(t —2).

(4)

2.2 Translation into a A-matrix

The corresponding A-matrix can be written from the di-
agram in figure 2. The method is to give a name to each
node and to write its value from the diagram. The ob-
tained A-matrix is:

o:=+l§+(+(A, B), C), D)
A: i, B

B:=0 D
C:i=— l:4y, E . (5)
D:=+(C, E
E:=0 fp, C

There is a great similarity between these equations (5)
and Z-equations (1): A-matrices data-flow semantics is
well-adapted to write signal processing equations. In ad-
dition, they allow a full modular design of applications.

2.3 Resolution of this A-matrix

Let us suppose that the input ¢ has the followed values %o,
i1, - - - in. The system (5) is solved with a functional ab-
stract machine. This machine defines a fixed-point equa-
tion that alternates evaluations and regenerations of
the system until a stopping condition is reached. In our
example, this condition does not exist and the solving
process has no end.

The abstract machine can be modeled with the dia-
gram in figure 3. In this figure, the state vector contains
all the initial values of the stream states. The new state
values are computed by the evaluation operator, and a
new system is built with these values by the regeneration
operator. This step is infinitely repeated by the recursive
resolution operator.

Note that obtained results are proven because the
solving expression is fully functional.

2.4 High-level language \-flow

filter

s lambda in:real.begin
B + C + D;

A-matrices are an abstract
language. They allow the mod-
ularity of applications at a low
level. So, a high level data-flow
language has been defined, named
A-FLOW. It especially deals with modularity based on the
modularized version of the A-matrices [7] and gives a con-
venient interface to the designer. It is possible to program
the example in figure 2 with this language:

ollowad by D;

lalled

llowed by C;

2.5 Parallelism considerations

initial system [regeneration
"
regenerated system output
/—/\—\

in?ut

; : function
%A node @
a4 "ﬁ e

The resolution of a A-
matrix has three steps: in-
put sampling, evaluation-
time and stream regenera-
tion-time. The evaluation
operator gives a value
to each actor, while the
regeneration operator re-
generates stream states.

In figure 3, the solv-
ing process computes each
component of the target
state vector'. The order of
these evaluations is unim-
portant, but they must be

) all terminated when the
system is regenerated. The resolution method clearly sep-

arate the parallel code from the sequential code: function
f1, f2 and fs can be evaluated in parallel (f5 is evaluated
twice, without any optimization), and then, the target
state vector is copied into the source state vector.

But this mechanism is well adapted
with the assumption of an infinite num-
ber of processors. Indeed, as shown in
figure 3, the node a is evaluated twice. A
temporary variable can be put in place

of the node. The value of this variable
is evaluated, and the resulting value is
used twice. But the introduction of tem-
porary variables implies some functional
dependencies: the node a has to be eval-

uated before f> and g .

The solving scheduling is shown in figure 4. Streams
are first initialized. Then, inputs are sampled, and all

e

so\vmg

Figure 8: Solving of a sys-
tem. fi1, f2 and f3 are func-
tions.

Figure 4:
Scheduling.

1Note that in a real implementation, there is only one state
vector: the memory.

the temporary variables are evaluated depending upon
their functional dependencies. Stream states are evalu-
ated, and the process returns to the inputs sampling.

Now, classical methods can be used to schedule the
tasks [4]. Note that the implementation is static: we
have proposed a simple parallel architecture that plainly
exploit this fact (§ 8.2).

3 AMMATRICES DATA-FLOW

The systems are described with an abstract language.
This language is composed of a set of actors suitable
for a data-flow programming. We have defined atoms,
basic objects (alternative, application, definition and
stream) and primitive modularity objects (extraction
and vector). The behavior of these objects is given by
the dynamic operators (regeneration, evaluation and
reduction) (§ 5).

Atoms form the alphabet of the language. Natural in-
tegers and their associated operators, user data and their
specific operators?, identifiers, some comparators, | and
T are atoms. Syntax of atoms is usual.

Alternative is a choice between two expressions de-
pending on a condition. It is written : condition —
then,else. If the evaluation of condition is not 0 then
the result is the evaluation of then, else it is the evalua-
tion of else.

Application acts as a filter of its arguments ac-
cording to the operator semantics. It is written:
op(arg,, arg,, ..., arg,), which applies the operator op
to the arguments arg;.

Definition allows identifier-value associations. It is
written : ident := value. This writing denotes a defi-
nition and not an_ affectation. The identifier becomes a
synonym of the value in the current environment or in its
sub-environments. When an identifier does not match a
definition in the current environment, it is considered as
an input. The inputs at the top-level system are reserved
identifier such as input;.

Stream allows to write in a functional way a recurrent
equation. Such an equation can be seen in different ways:
it is a delay operator in automation control, and it is a
state variable in software engineering. Stream is writ-
ten: state fi, contract. It has two parts : a state which
contains the initial value and a contract for computing
the following state values®.

Vector is a basic structuring object that gathers ex-
pressions into the same structure. A vector also defines a
frame of environment where identifier-value associations
are created by definition objects. A vector is written:

C1
cn’

2User data and their operators define an algebra. Integer alge-
bra is available by default. Several algebra can coexist in the same
system.

3Note that this stream semantics differs from the one used
in LUCID,...Indeed, if a denotes the stream a = {a1,a2,...,0,
and b the stream b = (by,b2,...,b,), then the stream ¢
(a1,b2,b3,...,bn) can be obtained with the expression ¢ :
(1 fby 0) — a,b and the stream ¢ = (a1,b1,b2,...,bn) with c:
=a fby b.

], where ¢; ...c, are actors.

Vectors are a primitive tool for a modularized design,
greatly enhanced by the modularized A-matrices [7].

Extraction can read an indexed value inside a vector.
Its writing is : module-index. Extractions are an explicit
functional mechanism for defining multi-output functions.

4 DENOTATIONAL DEFINITIONS

The following sections provide a formal denotational se-
mantics for the primitive expressions of the A-matrices.
A convenient introduction can be found in LLoyDp [17].

4.1 Standard expressions

This section describes some syntactic forms of useful func-
tions in the semantics.
(...) : sequence formation

sl k : kth member of the sequence s (1-based)
#s : length of sequence s
s§t : concatenation of sequences s and ¢
stk : drop the first k!* members of sequence s
t—a@®b : McCarthy conditional “if ¢ then a else b”
p[z/[z; : substitution “p with z for 4"
T : injection of z in domain D
z|D : projection of z in domain D

4.2 Abstract syntax

The elements of the language can be given:

A € Alg : user’s algebra dependent
N € lInt : integers

I € Ide : identifiers

F € Flag : flags

O € Ope : operators

E €Ezp : expressions

E € Ezp : frozen expressions

With these elements, valid expressions of the language
can be defined:

Ezp — A : algebra
I : identifier
N : integer
F : flag
Ew— E,E : alternative
O(E™) : application
E fy, E : stream
I=F : definition
E. : extraction
[E™] : vector

In addition, frozen expressions are:

Ezp —> : algebra
: flag
: integer

"] : vector

2>

They correspond to the result of the evaluations opera-
tor (§ 5.3).

4.3 Semantic domains

Symbol = is used for testing the equality and symbol =
indicates the equivalence. Semantic domains are:

: data

: integer

: operator
: identifier

o

w0 W OHhe0 S«
'_
-

: flag

: alternative
: application
: definition
: extraction
: stream

: vector

RT OO YNNG
(LRI R T
Tt TuNxNNeNS
+Xx X X XX X
ZxnnNaN
O x
+x
=
~

™

: expression

ol
© =3
9
+
™
N4+
+ N
< 4+t

*lz

+
X : continuation
: environment

MMM MMMMMMMMMMMM

x|
NS}

The environment structure is not the classical one: here,
an environment is a list of vectors. In these vectors, only
the definitions will be considered. In semantics equations
below, environment parameters are named p. The func-
tion lookup 1 p retrieves the value associated to the identi-
fier 4, function lexical i p retrieves the environment where
the identifier ¢ is defined and the function extend i 7 p
adds the definition ¢ = 7 to the topmost vector of the
given environment p.

Because the state of the system is globally modified
at regeneration-time and because there is no side-effect
operator in the language, the usual indirect data access
(store) between a name and a value is not needed.

4.4 Semantic equations

Semantic equations operate on the expressions of the ab-
stract language and produce the expressions of the se-
mantic domains. Their signatures are:

: frozen expression

> :Ezp—> N —-R —= K : solving
X Ezp - R = K : regeneration
Ezp—>R =K : evaluation

< Ezp —» K : reduction
A Erxp—- R =K : closure
Ac Ezp - R = K : calculability
Ay Ezp - R —- K : stability

o Exp—>R —- K : norm

5 ABSTRACT MACHINE

5.1 Resolution >

Only closed (§ 6.1), calculable (§ 6.2) and stable (§ 6.3)
systems can be solved. The solving operator is a tail-
recursive function. Its main parameters are an environ-
ment and a system. In addition, it has a stopping condi-
tion that allows the recursion to be ended. This stopping
condition is an integer that indexes a value inside the
system: when the extracted value is 0 the resolution is
terminated and the continuation is invoked.

The solving operator alternates evaluations (§ 5.3)
and regenerations (§ 5.2) of the system until the stop-
ping condition is reached. Its expression is:

[7*] lapn E

where [7*] is the system to be solved, a the stopping
condition integer, p the current environment and & the
continuation. Note that alternative objects of the lan-
guage are written ¢ — t,e and denotational alternatives
are written ¢ — ¢t @ e. In the equation, p§([r*]) is the
extended environment, €* the sequence of the evaluated
components of the system.

5.2 Regeneration v/

This operator regenerates all the stream states of
a system in a synchronous way. The new stream states
are the evaluation result of their contract (/[7foy7']).
All the components of other objects are regenerated one
by one. The regeneration of a vector is the vector of the
regenerated components in the extended environment (a
vector plays the role of a frame of an environment). The
expression of the regeneration operator is:

vl kv Hpn = vgw]]p)\e. vV [7* JpAe” .k{e)§e™
1 low =50
Vime o', 7" o = vinlede. v, [« leAe’. 7 [« [pAe".
ke e,
v]o(m*)ﬂtm = v"[[,ﬁ*]]pke -k o(e™)
vif,i t,n]pk Enf,z,t,n)
v[[z_w pE =W ﬂ]]p)\e.nzze
|I7r7r lpk Ev[w']]p/\e v ,]]p)\e .k e.€
Il Ton = KLa'fore. 7 [n Aorel o < foy ¢
Vi lles = [7"1p8(77]) Ae™ .k [€7]

5.3 Evaluation A

This operator gives a value to the expressions of the
language. The application evaluation (A[o(7x*)]) is the
reduction (§ 5.4) of the application of the operator to the
evaluated arguments (applicative mode).

An extraction (A[[7*].w]) extracts a component of a
vector with an integer. This selection is performed with

a projection into the tested domain (e|,,,.,.,)-

The evaluation of an identifier (A[:]) is the evalua-
tion of its associated value (lookup i p) in the environ-
ment where the identifier was defined (lewzical i p) (lexi-
cal binding). This evaluation may not have an end if the
expression defines a fixed-point equation with the form
z = f(z). Such expressions are detected with the calcu-
lability criterion (§ 6.2). The expression of the evaluation
operator is:

A*[wm*]]pn = Agw]]p)\e. A* [w* JpAe” .k (€)§e”
A for =k 0)
Alr = n', 7" Jpx = A[7]pXe.
e£0— Al[ﬂ PE D A" Jpk
Alo(n*)]pr = A [#x* IpAe™. <] o(e*)]k
Al f,t,n]lpr =k f,t,n
Ali=nlpr =
Al[n*].7" o = A*[[ﬂ'*]]p§([7r*]))\e A[[‘rr']]p)\e.
integer = L= n LR Le
Alnr.m'Jps = A[w]]p/\e
J.—)HJ.G)A[EW les
Ali]pr = Aﬁlookup i pl(lexical i p)k
Alnfoym’ Jow = A7]pr
ATt 1lon = AF[7° 1o8(m™T) Ae™ o [e7]

Note that the evaluation results belong to frozen expres-
sions, a subset of the expressions of the language (§ 4.2).

5.4 Reduction «

[Ae*.e* L a0 _) Vﬂ 1lore. > HEI&l(;ﬁreductlon operator simply applies the operator to the

rguments and gives the result to the continuation. This
operator was separated from the evaluation process be-
cause its activity depends on the algebra used. In this
way, algebra dependent computations are clearly sepa-
rated from the A-matrices dependent computations.

do(m*La’™)]k =k L
do(m*)]lk =kow*

At least, if one argument is 1, the result is 1.

6 CRITERION FUNCTIONS

6.1 Closure A,

This operator allows to check if a system is closed. In a
closed system, each encountered identifier matches a defi-
nition in the current environment. This function uses the
lookup environment function that returns the associated
value to an identifier into a hierarchical environment, or

1, if there is no corresponding definition (A;[¢]).

Af[na™ Jpk
AL ler

A[m = o', 7" ok
At[[0(7r)]s

i £t nﬂpn

Al i =T |pk

Ad[7’ Jow
Ali]ps

Adlw foy [k

A [7*]lpr

Al[[lpre.e = Af[7™ Jpr, k0

[(m, ', 7" Jon
[7*Tor

(pK

')]
up ip)=L—->0p1

')] pr

Toin) &

It can be proven that the system provided by the regen-
eration of a closed system is also closed: closure is con-
servative [10].

k1
= A7
A
K
K
A}
K
A}
=A

,
k:

,
*

L
i
1
1
1
(1o
L
1

[
[<
[

6.2 Calculability A,

When a closed system is calculable, it does not contain
any fixed-point equation. A fixed-point equation occurs
when the associated value of a definition uses the identifier
of the definition, such as ¢ = f(x)*.

Each component of objects is checked with a sim-
ple tree-marking method: encountered symbols are
over-defined in the environment with a special value
((lezical i p)§([i = L1])); then, if a symbol is found to
be associated with this special value, a cycle is created.

A nn™ |pk Ac[m]pre.e = AZ[n* Jpk, k0

AZL lew k1
Acm =o', 7" Jpk A2|I<7T ', 7w’ |k
Acfolrlox = ALl
Al f,t,n]pk
A, i:7lr PR I‘El

AZ[[(m,7') Jor

Al 7oy’ 1ok c[[ﬂ']]pAee:O—HcO

>
o

i,
3
5
="
>
=

| & ||| (111l ||| (1111l

A K
Acli]pr =)\e[[e —]]O — k0
T®e=1L okl
DA, ﬂlooku ipl
(eztend i T glezzcal ip))k
Ac[lm*11er = AZl=*] o8

It can be proven that the system provided by the regen-
eration of a calculable system is also calculable: calcula-
bility is conservative [10].

6.3 Stability A,
The dimension® of stable systems is identical to the di-
mension of its regenerated system.

An alternative must have the norm (§ 6.4) of its then
equal to the norm of its else (As[7 — 7', 7"]). An ex-

traction must have a vector or an identifier for indexed
value, and an integer for index (As[w.w A stream

must have a frozen expression (§ 4.2) as initial state, and
the norm of its state must be equal to the norm of its

“But recurrent equations (built with a stream) are allowed, such
as ¢ =0 fpy + (1,) that defines the stream of natural integers.

5The dimension of an atom is 1, and the dimension of a com-
pounded object is the sum of each its component dimension.

contract (As[Tfoym]). With these additional conditions,
the dimension of a stable system is constant [10]. The
expression is:

s

Aj[nn* Jpr = As[nw]pre.e = A;[n" Jpr, k0
1

ALl les =
Aj[n =o' 7" Jpr =o' JpAE.a] 7" JpAe' € =€
= Al (m, 7, 7Y |pr B K O
Asfo(n*)]px = A[7" [pr
sﬂf,z t,nlpk =k1
Asfi=nlpr =kl
As[[w*lnl]pr = As[[77]]ek
slenlpr =x1
As[m.a’pk =k0
A[7fymlon = ol7IoMe.oLn]oAE'.
E=¢ 2 Anlpr®r0
As[nfoym]pr =k0
A lor = AL 108"

It can be proven that the system provided by the regener-
ation of a stable system is also stable: stability is con-
servative [10].

6.4 Norm o

The norm of an expression is the biggest dimension of
all the possible results obtained by evaluation. Several
dimensions can be obtained with the use of alternatives,
according to the condition evaluation result.

So, the norm of an alternative (o[c — =, 7', 7"]) is
the biggest norm of either its then or its else clauses. The
norm of applications (o[o(7*)]) is 1 because an applica-
tion returns either a data or L (the dimension of data is
supposed to be 1). The norm of identifier (o[7]) is the
norm of the corresponding value (lookup i p) in the corre-
sponding environment (lezical i p). The norm expression
is:

o*[nr* Japk'

o[Japr

ole— m, 7" 7" Jpr

(r[[(7r]]p/\)e.(r* [7* JapAe®

o[«]]p)\e o’[[7r”]]p)\e”.
ke > o e EB

olo(m™)]pk K1

ol ft,n]ps k1

oli=m]|pk k1

(r[[w*].n pK ox" L n]pk

ol [n*].7 o [7*] > p¥{[n"]) k
olim]pk a'[[lookupzpw (lexical i p)k

)
E
HI 1111 III LTI [

a[m F{leﬁ) o
alilpk a[[lookup i pl(lezical i p)k
ol 7 foy Jor o7]pk
o[[7*]]pr o [7"] + p8([x"]) &

7 DETERMINISMS

The expression of the resolution operator is tail-recursive:
it defines a fixed-point equation (§ 5.1). Its main param-
eter is the system to be solved [r*]. If the stopping con-
dition is not reached, the result of the current resolution
is the resolution of the regenerated system /[[7"]]p.

We have defined some properties such as closure, cal-
culability and stability. A system can be solved only if it
has these properties. The question is: if a system So has
these properties, does the regenerated system S1 = S0
have them, and more generally, does all the next regen-
erated systems Sy = 7 S¢—1 have them ? We proved that
the answer is yes with some induction proofs [10].

The most important criterion is stability: it deals with
the dimension of systems. The dimension can be viewed
as the amount of information necessary to describe the
system. We have proven that the regenerated system of a

K (aee™)

stable system is also stable, which implies that the dimen-
sion remains constant. We do not study computation-
time: we only say that if a system is stable, the global
computation time has a limit, without wanting to know
it. With fine time-studies, A-matrices could efficiently be
used to describe real-time systems.

8 OUR FURTHER PLANS

8.1 User friendly interface

= filter.lg (==
File Edit compile option Help

apply

abom
it
input
module
output

stream

Lambdagraph-0.1.1 alpha

Figure 5: Graphical interface of the A-matrices.

A graphic object-oriented interface of a A-matrix
named A-graph [6] can be seen in figure 5. A syntac-
tic data-flow compilable language named A\-FLOW was de-
signed. This is the upper level of this work, which pro-
vides the great convenience of user friendly interfaces.
These languages are independent of the used algebra:

“things” that manipulates programs are not known in ad-
vance.

8.2 Parallel architecture

The parallelism of the model will be exploited in a specific
architecture. Concurrent problems are avoided because
the A-matrix model clearly separates the sequential and
parallel program blocks (§ 2.5).

In addition, due to its functional feature, the order of
computations is not important. Functional dependencies
only exist with intermediate variables, which can be seen
as optimizations. Already, the parallel compiler princi-
ples are designed [8]. An example of a specific archi-

CONTROLER |

=3
el

o

z|z1=
9§M,M 0

CONTROLER2 |

: n

CONTROLERn _

z|=

3|z

2|
o

£ |

2le
Ed

Figure 6: Model of the A-matriz MIMD architecture.

tecture is shown in figure 6. The scheduling is obtained

at compile-time, merely with a pseudo-execution. Due to
the stability criterion, this scheduling is always valid. So
the memory management is avoided, merely replaced by
3-states chips. A simulator of this parallel architecture
has been built [9].

9 CONCLUSION

This paper describes the functional semantics of an ab-
stract language named A-matrix. It is a functional syn-
chronous data-flow-like language (FSDF). This language
is intended to implement signal processing applications on
parallel architectures. It is the semantics aspect of a CAD
tools chain built by the authors. It contains a graphical
data-flow editor, a syntactic language and its sequential
compiler, a parallel compiler and a parallel architecture
simulator.

This functional semantics description has three parts:
the description of the elements of the abstract language,
the abstract solving machine and the criterion functions.
The description of elements of the language is based on
a simple abstract grammar. The solving process is com-
posed of two activities: evaluation that gives a value to
expressions, and regeneration that recycles stream states.
This particular method increases parallelism exploitation
of the programs. Three criterion functions are defined,
each associated to its property. These functions are rela-
tive to time-memory determinisms of implementations.

References

[1] E. A. Ashcroft and W. W. Wadge. Lucid, a Nonprocedural
Language with Iteration. j-CACM, 20(7):519-526, July 1977.

[2] J. Backus. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs.
j-CACM, 21(8):613-641, aug 1978.

[3] A. Benveniste and P. LeGuernic. Hybrid dynamical systems
theory and the siGNAL language. IEEE Transactions, 35:535—
546, 1990.

[4] M. Cosnard and D. Trystram. Algorithmes et architectures
paralléles. InterEdition, 1993.

[5] G. de Wailly. Implémentation des A-matrices & I’aide du A-
calcul. Technical Report 95-34, I3S, july 1995.

[6] G. de Wailly. User manual of lambda graph, the graphical
interface of the functional synchronous data flow language
lambda flow. Technical Report 95-33, I3S, july 1995.

[7] G. de Wailly and F. Boéri. A formal specification of modular-
ized A-matrices. Technical Report 95-57, I13S, october 1995.

[8] G. de Wailly and F. Boéri. A parallel architecture for lambda
matrices, a functional data-flow abstract language. Technical
Report 95-42, 1I3S, july 1995.

[9] G. de Wailly and F. Boéri. A parallel architecture simula-
tor for the lambda matrices. In Association of Lisp Users
Meeting and Workshop Proceedings. LUV’95, august 1995.

G. de Wailly and F. Boéri. Proofs upon basic and modularized
A-matrices. Technical Report 95-69, I13S, december 1995.

J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the
SISAL language project. Journal of Parallel and Distributed
Computing, 10(4):349-366, 1990.

P. Fradet and D. Le Métayer. Compilation of functional lan-
guages by program transformation. In Transaction on Pro-
gramming Languages and Systems, volume 13,1, pages 21—
51. ACM, 1991.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Pro-
grammation et vérification des systémes réactifs : le langage

[10]

(11]

(12]

(13]

LUSTRE. Techniques et Sciences Informatiques, 10(2):139—
158, 1991.
[14] M. Kunt. Traité d’Electricité- Traitements numérique des

signauz. Edition Georgi, 1980.

15] P.J. Landin. The next 700 programming languages. Commu-
nication of ACM, 9:157-166, march 1966.

[16] E.A. Lee and D.G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235-1245, September 1987.

[17] A. Lloyd. A pratical introduction to denotational semantics.
Cambridge Computer Science Texts 23, 1986.

