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Abstract

In this paper, a software simulator of a parallel multipro-
cessor architecture is described. The intent of this work
is to show how a dynamic object-oriented language can
be used to model complex and realistic “things” in a very
short time. The object paradigm allows an homogeneous
view of objects with common methods. An inheritance
mechanism significantly reduces the code because of the
feature sharing. Here, the classical database object-model
shows the relationships between object instances. In addi-
tion, the inheritance-graph describe the inner construct of
objects. A graphical interface is built over the simulator,
but only its layout is shown here.

1 Motivations

This paper presents a software simulator of a simple par-
allel architecture modeled with a functional language and
its dynamic object-oriented interface.

A functional data-flow language was defined in our
laboratory! in order to implement signal processing ap-
plications on fast parallel architectures. This abstract lan-
guage is named A-matrix. It offers several advantages: It is
very simple and uses an accurate mathematical semantics
which allows proofs of programs and behaviors. Time and
memory determinisms are established in a proved way too.
The data flow paradigm preserves the inner parallelism
of applications and graphical representations are possible.
Parallelism of applications is well exploited, due to the
particular solving method. In addition, the parallel com-
pilation algorithm uses an efficient task interleave and a
local memory cache for each controllers.

In order to evaluate the A-matrix concept relatively to
the parallelism exploitation, a simulator of the architec-
ture was needed. Moreover, this simulator is the software
model of a hardware board that will be build in our labo-
ratory.

The board is wanted to be cheap and simple. So, vul-
gar controller are used, directly connected to a single bus,
as a common memory. I/Os are accomplished by address
decoding. Common memory access conflicts are solved at
compile-time. In addition, statistical results may be ob-
tained from the simulator for analysis.

I This abstract language is a part of a thesis. Significant results
are currently submitted to some conferences.

In order to simulate the parallel board, the program-
ming environment STK was chosen. It offers a graphical
toolkit interface (TK), a dynamic object-oriented inter-
face (STKLOS) and a functional language (SCHEME). With
the use of this powerful tool, the obtained coding is very
short. It can easily be modified and adapted. The graph-
ical toolkit is used to build an user friendly interface of
the simulator. The object-oriented layer allows homoge-
neous view of objects through common methods. More-
over, a great code reuse is accomplished with the inher-
itance mechanism, even for a such small application. At
last, the SCHEME language increases the programming ef-
ficiency.

In this paper, the parallel architecture is presented as
specifications (§ 2). Then analysis of both the simulator
and its graphical interface is given (§ 3). STK is described
in a short way (§ 4). Then the STK code of the simulator
can be seen (§ 5), and the layout of the graphical interface
is shown (§ 6).

2 Specifications: The parallel ar-
chitecture

The parallel architecture is a very simple cheap board built
with vulgar controllers, as shown in figure 1. Controllers
are directly connected to the bus: Sharing of bus accesses is
allocated at compile-time. The board could be divided into
three main parts: Controllers, a common memory which
includes the global RAM and the I/Os lines, and the bus.

Each controller has its own local RAM, ROM and ALU.
Program of each controllers is put on its ROM. Local RAM
can be used as a local stack. In addition, the A-matri-
ces parallel compilation allows this local RAM to be used
as an efficient global memory cache. Each controller has
two general registers (A, B), one code pointer (CP),
classical stack pointer (SP), stack base (SB) and base
pointer (BP). With some operations, negative (IN), zero
(Z) and overflow (W) flags are altered. All the registers
are mapped into the RAM, as shown in table 1.

As shown in table 2, the assembler is very simple.

The assembler instruction set is wanted as realistic as
possible, but it is limited. Multi-cycle instructions are al-
lowed, such as the multiplier operator. The instruction
set can be divided into several parts: Jump, move, stack
procedure-call, math-1, math-2, logic and other instruc-
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Figure 1: The parallel architecture for the A-matrices.

| register | address [ name |

A 0 first general
B 1 second general
CP 2 code pointer
SB 3 stack base

SP 4 stack pointer
BP 5 base pointer
N 6 negative flag
W 7 overflow flag
Z 8 zero flag

Table 1: Addresses of the controller registers in its local
RAM.

tions. The particularity of the move instructions is to al-
low both the communication with the internal raM (ldc,
lda, sta) and with the external global RAM (mov, get),
via the main bus. Because registers are directly mapped
into the local RAM, all the instructions which address the
local memory may also address the registers: For exam-
ple, add 0 is identical to add A. An assembler language
accomplishes these conversions.

The common memory is a global RAM associated and
one I/Os line. In this paper, the number of I/Os line is
limited to one, in order to remain simple. I/Os are per-
formed by address decoding: The address 0 is reserved to
I/Os.

The main bus of the card is the link between controllers
and the common memory. Each controller is directly con-
nected to the bus: Access conflicts are solved at compile-
time. Because bus accesses are a bottleneck, some improve-
ments are expected to reduce the data-traffic. The main
improvement is to use the local memory of controllers as a
cache memory of the global RAM. These considerations as
part of the parallel compiler of the A-matrices, and they
are not described here.

3 Analysis

3.1 Object model

The main objective of this analysis is to discover the
needed objects with their attributes, and the relation-
ships between these objects. The used method is the clas-
sical object-model of the database analysis method [9], as

code

| cycle [ NWZ [ action

jump
jmp ¢ 1 cp ¢
jnc 1 n=07cp+c: cpcp+2
jnnc 1 n#Z0?ep—c: cp—cp+2
jwe 1 w=0%7cp+c:cp+cp+2
jnw ¢ 1 w#0?cpc: cpcp+2
jz c 1 z2=07cp<+c:cp<cp+2
jnz ¢ 1 2#07cpc : cpcp+2
move
mov @ 1 Q] « A,cp cp+2
get @ 1 A+ [Q],cp+ cp+2
Idc # 1 A« #,cp—cp+2
Ida & 1 A+ [&],cp  cp+ 2
sta & 1 [&] «+ A,cp + cp+2
stack
Idsb # 1 sb < #,sp + sb,cp—cp+2
1dbp & 1 bp < [&],cp < cp+2
push & 2 [sp] « [&],sb < sb+1,cp+—cp+1
pop & 2 (&] « [sp],sb < sb—1,cp+cp+1
top # 1 A<+ [bp—#]l,cp—cp+2
procedure
call ¢ ‘ 4 ‘ push(a), push(bp), push(cp),cp < ¢
ret 3 pop(cp), pop(bp), pop(a)
math-1
shr & 1 . A—[&,A+ A/2,cp+cp+2
shl & 1 . A+ [&], A« Ax2,cp<+cp+2
neg & 1 . A+ [&],A+ —A,cp+cp+2
inc & 1 . A+ [&], A+ A+ 1,cp+cp+2
dec & 1 . A+ [&],A— A—1,cp+cp+2
math-2
add & 1 . B+ [&,A<— A+ B,cp<+cp+2
sub & 1 . B+ [&], A« A—B,cp<+cp+2
mul & 3 . B+ [&], A+ AxB,cp<cp+2
div & 3 . B <+ [&],A+ A/B,cp < cp+2
mod & 3 . B« [&],A <+ A%B,cp<+ cp+2
logic
and & 1 D) B+ [&],A+ A&B,cp+cp+2
or & 1 . B« [&],A« A|B,cp < cp+2
xor & 1 . B+ [&],A<+ AANB,cp<+cp+2
nor & 1 . B+ [&],A «+!(A|B),cp < cp+2
nand & 1 . B« [&], A < !(A&B),cp < cp + 2
other
nop 1 cp+—cp+1
cmp & 1 . B« [&],A— B,cp < cp+2
e = flags N, W and Z are altered
# = constant
& = local ram address- [&] addressed value
@ = extern ram address- [@] addressed value
¢ = local code address

Table 2: Instruction set of the controllers.

shown in figure 2. Note that in this paper, classes are noted
(CLass), as the STK conventions (§ 4).

Controllers have only one RAM and one ROM and they
are connected to only one BUS. The COMMON object
is the global RAM of the architecture and the associated
I/Os lines. It has only one RAM and it is connected to only
one bus.

Visual objects are mapped to corresponding simulator
objects instead to be specialized to “become” visual. This
method is used to preserves the independence of the two
parts of the program. In addition, several instance of visual
objects are in relation with one simulator object, such as
the visual stack and the visual RAM in relation with the
simulator local RAM.

From this object model of the applications, the inher-
itance graph can be directly deduced, as shown in next
section.
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Figure 2: Object model of the simulator: It shows the re-
lationships between the object instances. Note that V- ob-
jects belong to the graphical interface.

3.2 Inheritance graph

This section deals with the classes of the application, de-
duced from the object-model. The object model focuses
on relationships between object instances. The inheritance
graph shows how objects are built by specialization of
more generic objects: It deals with the classes of objects,
as shown in figure 3.

V-CONTROLLER
OPLEVEL }V-TOP
V-BUS
[LABELED-ENTRY }{V-REGISTER | V-STACK
V-RAM
[SCROLL-LISTBOX }—{V-MEMORY V-COMMON
[V-ROM |

CASTABLE

CONNECTABLE
CONTROLLER

Figure 3: Object inheritance graph of the simulator: It
deals with the object classes. Grayed boxes denote leaf 0b-
jects that can be directly instantiated. Italic name denote
a class belong to the STKLOS package..

(CONNECTABLE) objects can be connected to a (Bus)
object. A (CASTABLE) object convert integer according
to a number of bits. Note the multi-inheritance of the
(RAM) class. A (MEMORY) class object can address an
array of cells with read and write! methods. (RAM) and
(RoM) inherit from {MEMORY) class. In order to simplify
the code, (ROM) memory also can be accessed in write
mode (dumping of programs). Class (COMMON) is a spe-
cialized (RAM) which decodes its address 0 for I/Os.

4 The object functional scheme
language: Stk

The simulator is implemented with STK [5]: It is a
SCHEME [3, 1] language compliant with the language de-
scribed in the Revised* Report on the Algorithmic Lan-
guage Scheme. STK is written by ERIK GALLESIO.

TK is a powerful X11 graphical toolkit defined at the
University of Berkeley by John Ousterhout [10]. This
toolkit provides to the user with hight level widgets such
as Buttons or Menus and is easily programmable. In par-
ticular, little knowledge of X fundamentals is needed to
build an application. TK package relies on an interpreta-
tive language named TCL.

STK is another implementation of SCHEME program-
ming language. The main feature of STK is to provide a
full integration of the TK toolkit in SCHEME. In this imple-
mentation, SCHEME establishes the links between the user
and the TK toolkit, since it substitutes the TCL language.

STKLOS is the object-oriented layer of STK. Its im-
plementation is derived from version 1.3 of the Gregor
Kickales TINY CLOS Package [8]. However, it has been ex-
tended to be as close as possible to CL0S, the COMMON
Lisp OBJECT SYSTEM [T7].

Briefly stated, the STKLOS extension gives the user a full
object-oriented system with meta-classes, multiple inher-
itance, generic functions and multiple-methods [11]. Fur-
thermore, the whole implementation relies on a true meta-
class object protocol.

This model has also been used to embody the predefined
TK widgets in the hierarchy of STKLOS classes. This set of
classes permits to simplify the core TK usage by providing
homogeneous accesses to widgets options and hiding the
low level details of the TK widgets, such as naming conven-
tions. Furthermore, as expected, using objects facilitates
code reuse and definition of new widgets classes.

5 Implementation

In this section, the full code of the simulator is given. Its
graphical interface is not describe. Files of this program
can be obtained in a free public access way. Electronic
addresses may be obtained from the authors.

5.1 Preliminary

The main principles of the object-oriented layer of STK
used here are inheritance (static feature sharing) and
method specialization (dynamic feature sharing). These
two kinds of feature sharing significantly reduce the code.
Let us briefly introduce the defined objects.

The architecture consists of a global bus where chips are
connected: Many controllers and one common memory.

The (BUS) has two functions: Receives user’s clock sig-
nals and propagate them to the connected chips, checks
accesses to the global memory and manages the poten-
tial conflicts. In addition, it deals with user’s reset signals.
Its main methods are connect (chips connection), reset
(chips reset), clock (chips clock), read and write! (ac-
cesses to the common memory).

(CoMMON) memory is the global RAM plus I/Os man-
agement. In order to simulates I/Os, common object has
one input file and one output file. These files are accessed
when a controller read or write to the global address 0.
Methods of this class are read, write!, and some addi-
tional initialization methods.

(RaM) and (RoM) are a kind of (MEMORY). A mem-
ory is an array of cells that contain a value. This array is
indexable with an address. In order to simplify the cod-
ing (especially the interface with visual objects), the class



(RoM) also defines a write! method which allows program
dumping with the dump method. The class (MEMORY)
supports read and write methods.

A (CONTROLLER) has a RAM, a ROM, an ALU. Its reg-
isters are mapped into its RAM, as in the real little con-
trollers. Most of the methods are relative to assembler in-
struction decoding. In addition, it can be found reset,
clock, microInstruction, macroInstruction and some
other methods.

In addition, two root classes are defined for inheritance:
(CONNECTABLE) specifies an object that can be connected
to a bus, and (CASTABLE) denotes an object which contain
an integer coded with a limited number of bits.

The following sections presents the simulator code or-
dered from the more specialized to the simpler.

5.2 The main program: Card creation

The main program is presented. It consists on some object
creations and a loop which send the clock signal to the
main bus. Here, a 2-controllers card is modeled:

(define bs (make (Bus)))

(define cm (make (COMMON)
:bus bs
:size 1000
:in “‘input.dat”
:out “‘output.dat”))

(define c1 (make (CONTROLLER)
:bus bs
:ram 200
:rom 200
:code ‘‘example-2-1.5"))

(define c2 (make (CONTROLLER)
:bus bs
:ram 200
:rom 200
:code ‘‘example-2-2.S”))

(Iet mainLoop ()
(clock bs)
(mainLoop))

The global bus is created. Then the common memory is
created with some options: Bus, RAM size, input file and
output file. The two controllers are created with global
bus, RAM and ROM sizes, and the file name where is the
assembler program as options. Note that the number of
created controllers is not limited.

The main bus is clocked by mainLoop tail-recursive
named let. Then the input file input.dat is read and the
output file output.dat is written.

5.3 Bus object definitions

The global bus is an interface with the user: It offers some
commands lines such as clock and reset, and an access
to the transfered data with both data and address busses.
The bus object must detect potential common memory
access conflicts. This is accomplished with the clock code.
When the bus is clocked, each controller is clocked too, and
its current instruction is executed. This instruction may
be a read /write access on the global bus: Such instructions
are stored in a list. At the end of the bus clock call, bus
accesses are checked in order to detect addressing conflicts.

As the model of architecture, class (Bus) has some
attributes: A common memory, a list of connected con-
trollers. The two last attributes lread and lwrite are lists
used to check bus accesses:

(define-class (Bus) ({CASTABLE))
((common :accessor common)

connected :initform ’() :accessor connected)
Iread :initform ’() :accessor lread)
lwrite :initform () :accessor lwrite)))

reset deletes the list of read /write accesses and it reini-
tializes each connected chip:

(define-method reset ((self (Bus)))
; flushes the lists
set! (Iread self) ’
Eset! glwrite selfg ’8;
; resets connected chips
greset (common self))

map (lambda (controller) (reset controller))
(connected self)))

connect allows a chip to be connected to the bus. Two
kinds of chip can be connected: Common memory and
other chips. First one alters the specific common at-
tribute of the instance. Other chips are added into con-
nected attribute list with the following function:

(define-method connect ((self (Bus)) chip)
(set! (connected self
(cons chip (connected self))))

Following connect function is more specialized than the
previous: It connects especially the (COMMON) chips:

(define-method connect ((self (Bus))
(chip (CoMMON))
(set! (common self) chip))

The next method occurs when a controller wants to read
the bus. It adds the list formed by controller, address
and procedure arguments to the (BUs) instance lread
list. The procedure will be called when all the controller
bus accesses are registered.

(define-method read ((self (Bus))
(controller (CONTROLLER))
address
procedure)

(set! (Iread self)
(cons (list controller address procedure)
(Iread self))))

write! function adds to the lwrite list the list formed
by controller, address and value arguments:

(define-method write! ((self (Bus))
(controller (CONTROLLER))
address
value)
(set! (lwrite self)
(cons (list controller address (cast self value))
(lwrite self))))

The following clock method is the main method of
the system. Connected chips are clocked. Each clocked
controller may access to the bus. These calls are stored
into the Iread/lwrite lists of the bus, as shown in the
read/write! methods. Then all bus access controls can
be accomplished:

(define-method clock ((self (Bus)))
; checks if each address of the lread list matches
(let ((callProcRead
(lambda (address value)
(map (lambda (ContAdProc)
(if (eq? address (cadr ContAdProc))
(apply (caddr ContAdProc)
(Iist value))))
(Iread self)))))
; flushes bus access lists
(set! (Iread self) ’())
(set! (Iwrite self) ’())
; clocks each controller
(map (lambda (controller) (clock controller))
(connected self))
; bus accesses controls
(case (length (lwrite self))
; mo write access
(0 (if (not (zero? (Iread self)))



(let* ((address (cadar (Iread self)))

(value (cast self (read (common self) address)))) ; write access to the registers
(callProcRead address value)))) (define-method register ((self (CONTROLLER)) reg value)
; one write access (write! (ram self) (reg self) value))

3
(1 (Iet ((address (cadar (lwrite self)))
(value (cast self (caddar (lwrite self)))))
callProcRead address value)
write! (common self) address value)))
; too many write accesses
(else
(error ‘Too many writes accesses on the bus”)))))

The goto method changes the value of the code pointer
register (CP) to address. It is used by the jump functions:

(define-method goto ((self (CONTROLLER)) address)
(register self CP address))

The next method sets negative, zero and overflow flags
according to value:

5.4 Controller object definitions

(define-method setFlags ((self (CONTROLLER)) value)

In this paper, the internal structure of the controllers is register self N (,'f§< value 0) 1 0))
not described. We only focus on a realistic interface (as- let ((casted (cast (ram self) value)))
. . (register W self (if (eq? value casted) 0 1)))
sembler language). A controller is constituted by a RAM, a (register self Z (if (zero? value) 1 0)))
ROM, an ALU and some registers. In order to remain sim-
ple, registers are directly mapped onto the RAM memory. This read function returns the next instruction from

The first ten cells of the RAM are reserved. In addition, a the ROM at the address pointed by the code pointer CP
controller has a list of next micro-instructions executed in and it increments the code pointer:
more than one cycle. This list may be empty. The class

¢ ; (define-method read ((self (CONTROLLER)))
declaration is: (Iet ((opcode (read (rom self) (register self CP))))
oto self (+ (register self CP) 1
(define-class (CONTROLLER) ((CONNECTABLE)) ((f,code)) ( (reg )

rom :accessor rom . . .
micro :accessor micro :initform ’()) The clock method deals with the next instruction to

’(’ Athe following register value is its address into the ram process. This instruction can be read either from the ROM,

:accessor A :initform 0) ; . N S U,
(B :accessor B :initform 1) or from the head of the micro-instruction list if it is not

CP :accessor CP :initform 2 .
SB :accessor SB :initform 3 empty'

SP :accessor SP :initform 4

BP :accessor BP :initform 5 (d(f{-h(]::ﬁf t(l::l)iczrzlggll?)()(self (CoNTROLLER)))
W :accessor W :initform 6; gmacrolnstruction self)

Z :accessor Z :initform T)) microInstruction self)))

(gram :accessor ram

The ini?ialization fupction of (CONTRQLLER) deals with If the micro-instruction list is not empty, the next in-
iram option for the size of the RAM, with :rom for the g1yction to be processed is in the head of this list. In
size of the ROM and with :code for the filename of the addition, the list is set to its tail:

program:
(define-method microlnstruction ((self (CONTROLLER)))
(define-method initialize ((self (CONTROLLER)) arguments) eval (car (micro self)))
(next-method) set! (micro self) (edr (micro self))))
(set! (ram self)

ake (R :si t-ki d : ts 100
(set! (Eglm sil(f) A0 sze (get-keyword ;ram arguments 100))) Macro-instructions are read from the ROM. According
( dump(’s"e‘lifk?ggf)k“g‘;fzg Efgfi'é‘fi{;"g;de:t‘;‘?()‘*)r)%“me"ts 100))) to the type of the instruction, an appropriate function is
invoked:
The dump function loads assembler instructions from (define-method macrolnstruction ((self (CONTROLLERY)))

a file into the controller ROM. It uses the dump method (Ifzag(:gg‘;gﬁéread self)))

of (RoM) which operates with a list of opcodes. This list ((nop)

is obtained with port->1listSTK function and the reader (C“rg;hmg)

(
read: (((cmpInstruction self (rea)d self)))) —_—
jmp jn jnn jw jnw jz jnz ; jump wnstructions
(define-method dump ((self (CONTROLLER)) fileName) (jumplInstructions self opcode (read self)))
(dump (rom self) ((mov get 1dc 1da sta exc) ; move instructions
(port->list read (open-intput-file fileName)))) (movelnstruction self opcode (read self)))
((1dsb 1dbp push pop top) ; stack instructions
(stackInstruction self opcode (read self)))

The reset function applied onto (CONTROLLER) flushes ; math unary instructions

the micro-instruction list and sets the first ten reserved ((and or xor nor nant)i ; lOgiialI instructions
. shr shl neg inc dec ; mat instructions
f:ells of RAM to zero: These addresses are mapped to the (math1Instructions self opcode (read self)))
internal registers. ((add sub mul div mod) ; math binary instructions
(math2Instructions self opcode (read self)))
(define-method reset ((self (CONTROLLER))) (else
gset! (micro self) *()) (error ““Unknown instruction: "a”%” opcode)))
let loop ((ad?o)) ; the Z flag is altered with some instructions
(if (not (eq? ad 10)) (case opcode
(begin ((neg inc dec add sub and or xor nor nand)

(write! (ram self) ad 0)

(setFlags self (register self A))))))

(loop (+ 1 ad))))))

The two following functions allow to access in a named Now, each instruction can be processed. The next func-

way to the controller registers. The register methods have tion deals with the cmp instructions. The micro-code can

two behaviors: Read access without a value, and write ac- be deduced from the table 2:

cess, with a value: (define-method cmplnstruction ((self (CONTROLLER))
operand)

; set B with the value at the address operand

(register self B (read (ram self) operand))

; set Z according to the A-B result

; read access to the registers
(define-method register ((self (CONTROLLER)) reg)
(read (ram self) (reg self)))



(setFlags self (- (register self A) (register self B))))

Jump instructions change on a condition the value of
the code pointer CP:

(define-method jumplInstructions ((self (CONTROLLER))
opcode operand)
(case opcode

; unconditional jump

(jmp (goto self operand))

s gump if N == 1

(jn (if (zero? (register self N))
(goto self operand)))

;jump if N I=1

(jnn (if (not (zero? (register self N)))
(goto self operand)))

sgump if W ==1

(jw (if (zero? (register self W))
goto self operand)))

s jump if Wl=1

(jnw (if (not (zero? (register self W)))
(goto self operand)))

sgump if Z == 1

(jz (if (zero? (register self Z))
(goto self operand)))

s qump if Z I= 1

(jnz (if (not (zero? (register self Z)))
(goto self operand)))))

Move instructions deals with data transfers between reg-
isters and either local or global memories:

(define-method movelnstructions ((self (CONTROLLER))
opcode operand
(case opcode
(mov
; write on the bus the value in A
( (write! (bus self) self operand (register self A)))
get
; put in A the value read from the bus
(read (bus self) self operand
(lambda (value)
(register self A value))))
(1dc
; load in A a constant
(register self A operand))
(1da

; load in A the value at the address operand
(register self A (read (ram self) operand)))
(sta
; stores at the address operand the value in A
(write! (ram self) operand (register self A)))
(exc
; exchange A and the value at the address operand
(let ((tmp (register self A))
register self A (read (ram self) operand))
write! (ram self) operand tmp)))))

Stack instructions alters specific stack registers. Instruc-
tions are push, pop and top. Most of these instructions
are complex and take more than one cycle. In order to
simulate the multiple-cycle instructions, a list of actions
is affected to the micro attribute. This is built with a
quasi-quote. Each action will be evaluated latter:

(define-method stackInstructions ((self (CONTROLLER))
opcode operand)
(case opcode

(1dsb
; put in SB and SP the constant operand
register self SB operand)
register self SP (register self SB)))
dbp

; put in BP the value at the address operand
(register self BP (read (ram self) operand)))
(push
; write at the address in SP ...
; ... the value at the address operand
(write! (ram ,self) (register ,self SP)
(read (ram ,self) ,operand))
; micro-coded
(set! (micro self)
‘(; decrement SP
( (register ,self SP (dec (register ,self SP))))))
pop
; write at the address operand ...
; ... the value at the address SP
(write! (ram ,self) ,operand
(read (ram ,self) (register , self SP)))
; micro-coded
(set! (micro self)

‘(; decrement SP
( (register ,self SP (inc (register ,self SP))))))
top
; put in A the value at the address BP-operand
(register ,self A
(read (ram self) (sub (register self BP) operand))))))

Unary mathematical instructions have one argument.
opcode is a symbol that corresponds to a SCHEME func-
tion. The function eval is used in order to evaluate the
list formed by the opcode and the argument:

(define-method mathlInstructions ((self (CONTROLLER))
opcode operand)
(register self A (eval (list opcode (read (ram self) operand)))))

Binary mathematical operators have two arguments A
and B. Some of these operators need more than one
instructions-cycle, so, they are micro-coded:

(define-method math2Instructions ((self (CONTROLLER))
opcode operand)
(case opcode
((mul div mod)
(register ,self B (read (ram ,self) ,operand))
; micro-coded
(set! (micro self)
‘((register ,self A (eval (list ,opcode
(register ,self A)
(register ,self B))))
(setFlags ,self (register ,self A)))))

(else
register self B (read (ram self) operand))
register self A (eval (list opcode
register self A
register self B)))))))

In addition, all the operators must be defined, such as
add with (define add +).

5.5 Common memory and I/Os object
definitions

Common memory is a RAM which decodes address 0 ac-
cesses for I/Os. In order to simulate the outer world, input
values are read from a file stored in attribute in and out-
put values are written into a file stored in attribute out.
CurrentIn/Out values are used by the graphical inter-
face:

(define-class (CoMMON) ((RAM))
((in :accessor in)
out :accessor out))
cin :accessor currentln)
(cout:accessor currentOut)))

The initialize method scans the command line (argu-
ments) for :in option which initializes the input the input
file and for :out for the output file:

(define-method initialize ((self (COMMON)) arguments)
(It(et (t(’p((?rt (%’fet-ke_yword :in arguments ’())))
set! (in se
(if (null? port) *()
(open-intput-file port))))
(Iet ((port (get-keyword :out arguments ’())))
(set! (out self)
(if (null? port) *()
(open-output-file port))))
(next-method))

When the read method is invoked, the address is de-
coded. If the address is not 0, then the next-method is
called: This call invokes the (RAM) read method. If the
address 0 is decoded, the input file is read (if it is possi-
ble):

(define-method read ((self (COMMON))
address)
(if (zero? address)
(Iet ((value 0))
(if (not (null? (in self)))



(begin
; uses the SCHEME read function
(set! value (read (in self)))
(if (eof-object? value)
(begin
ch;s'e-ixllpu%-port (in self))
set! value
set! (in self) ’())))))
(set! (currentIn self) (cast self val))
(currentln self))
(next-method)))

The write! method has the same structure than the
read one, but if the address 0 is decoded, the value is
simply written on the output file:

(define-method write! ((self (COMMON))
address value)
(if (zero? address
(if (not (null? (out self)))
(begin

(set! (currentOut self) (cast self value))
(write (currentOut self) (out self))))

(next-method)))

5.6 Memory object definitions

A memory is an array of cells (vector). (MEMORY) inherits
from (CONNECTABLE) (it can be connected to a bus) and
(CASTABLE) (stored value may be casted):

(define-class (MEMORY ) ({CONNECTABLE) (CASTABLE))
((array :accessor array)

The classes (RAaM) and (RoM) simply inherits from
(MEMORY):

define-class (RAM MEMORY
define-class (ROM MEMORY

The initialize method creates array vector according
to :size option:

(define-method initialize ((self (MEMORY)) arguments)
next-method)
set! (array self)
(make-vector (get-keyword :size arguments 0) 0)))

The memory size is the size of its internal vector:

(define-method size ((self (MEMORY)))
(vector-length (array self)))

The read function accesses to the array vector in order
to retrieve the value at the index address. If the address
is to big, 0 is returned:

(define-method read ((self (MEMORY)) address)
(if (address (size self))
vector-ref (array self) address)

The write! function puts value in the vector at index
address:

(define-method write! ((self (MEMORY))
address value)
(if ( address (size self))
(vector-set! (array self) address (cast self value))))

The next write! method is specialized for the (Rom).
It allows to dump a program into a ROM. This function
is especially used by the graphical interface. So, the writ-
ten values are not casted because they may be assembler
instructions:

(define-method write! ((self (Rom))
address value)
(if ( address (size self))
(vector-set! (array self) address value)))

The dump method is reserved for a ROM. It copies a
list of value in the vector with the use of classical SCHEME
named let construct:

(d((]ef:nlt:g;eié?;)g Sl)l.ilxnlilsat)()(self (Rom)) list)
(if (not (null? 1))
begin
( gwrite! self ad (car 1))
loop (+ ad 1) (edr 1))))))

5.7 Connectable object definitions

A connectable object can be connected to a bus. So, it
support methods reset and clock in addition to the ini-
tialize method which deals with the creation options:

(define-class (CONNECTABLE) ()
((bus :accessor bus)))

The standard initialization method scans optional ar-
guments (arguments) to find a :bus option in order to
allocates bus attribute of the instance. By default, an in-
stance of (NULLBUS) is created:

(define-method initialize ((self (CONNECTABLE)) arguments)
next-method)
glet ((bs (get-keyword :bus arguments (make (NULLBUS)))))

set! (bus self) bs
connect bs self))

The reset function is an user-call. It has no-effect on a
(CONNECTABLE) object:

(define-method reset ((self (CONNECTABLE)))
‘nothing)

The clock function simulates the global clock of the
system. It has no-effect on a (CONNECTABLE) object:

(define-method clock ((self (CONNECTABLE)))
‘nothing)

5.8 Castable object definitions

Castable object are associated to a number of bit for inte-
ger coding. cast method alter a given number according
to this number of bits. The class defines both an upper
and a lower limits for the given value. When a value given
to the cast method is not comprised between these two
limits, the nearest limits is returned.
(define-class (CASTABLE) ()
((width :accessor width :initform 16 :init-keyword :width)

max :accessor maximum
min :accessor minimum)))

Both the upper and lower limits are computed at init-
time for computation improvement:

(define-method initialize ((self (CASTABLE)) arguments)
next-method)

set! (maximum self) (expt 2 (width self)))

set! (minimum self) (- (expt 2 (width self)))))

The cast method transform a number according to the
width of the object:
(define-method cast ((cast (CASTABLE)) value)
(if §< value Eminimum self)) (minimum self)

(if (> value (maximum self)) (manimum self)
value))

6 Graphical interface

This section deals with the graphic interface layout of the
simulator. Implementation details are not discussed in this

paper.



As shown in figure 4, cont. 1 is an instance of the class
(VisUALCONTROLLER). It can be seen the graphic repre-
sentation of registers, stack (as (VISUALSTACK)), RAM (as
(VisuaLRAM)) and ROM (as (VISUALROM)). The inter-
face allows dynamic changes of the memory contents.

ENENNNREE

Figure 4: Graphical interface of a controller.

The graphic representation of the common memory can
be seen in figure 5. It can be seen the global RAM which
begins at the address 1, because the address 0 is reserver
for I/Os. In addition, there are two lists of values: Input
values read from the input file, and output values written
into the output file.

Figure 5: Graphical interface of the common memory.

Control panel is the graphical representation of the
main bus, as in figure 6. Global memory accesses can be
seen for each controllers. The system can be clocked either
step by step or in an animation way. Breakpoints can be
instantiated for each controller.

The complete graphic interface code takes about 600
lines because the TK interface and its object-oriented layer
is particularly efficient in STK.

7 Conclusion

In this paper, a practical use of a dynamic object-oriented
language is shown. The efficiency of such languages per-
mits to put in the pages of this article the specificatioos

= Control pannel =

Reset| Ereak

Exit Hext W1

cont. 1

]
]
| |

cont. 2

cont, 2

Figure 6: Graphical interface of the main bus.

of the problem, a short object-oriented analysis, and the
totality of the code.

A parallel architecture is modeled here. The description
may be as simple as possible. It is the preliminary work
which leads an hardware implementation of the architec-
ture and relative softwares such as an assembler/debugger,
a profiler, ...

The analysis shows how to use the well known database
object-analysis in other kind of applications. This model
focuses on the leaf objects (that can be instantiated) and
on their inner relationships. From this first step of analysis,
the inheritance graph can be deduced: It shows how classes
of objects are built.

The coding of this model has two phases: Classes
description and their associated methods. Classes de-
scriptions use inheritance mechanism which deals with
a static sharing of features. Methods uses the method-
specialization mechanism which deals with dynamic shar-
ing of features. These mechanisms greatly increase the
reuse of pieces of code.

At last, the graphic interface of the simulator is build
as an independent applications. Only the layout of this
interface is shown in this article.

The resulting code is actually short and efficient. Any-
one can rapidly modify it. Comments are not needed in
each line because the STK language acts such as a specifi-
cation language.
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