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Abstract

In this paper, a CAD tool chain is
globally presented. These tools al-
low graphical descriptions of signal
processing applications to be imple-
mented in a specific parallel archi-
tectures, via several transformation
steps.

The user interfaces of this tool
chain is a graphical editor and a syn-
tactic language, both based on a se-
mantic functional synchronous data
flow formalism. They allow a modu-
lar design of application.

This CAD tool chain is built upon
an accurate semantic data flow lan-
guage named A-matrix. The lan-
guage is independent with the user’s
algebra: it is “a thing that handles
things”. Several criterion functions
are defined to determine some prop-
erties such as time and memory de-
terminisms.

A-matrices can be compiled for se-
veral targets. Programs are firstly
flattened with a functional operator
that keeps the semantics. Then a se-
quencer produces the code, accord-
ing to the selected target.

Due to the particular solving
method which allows parallelism ex-
ploitation, we have defined a cheap
parallel architecture built with com-
mon controllers.

1 Introduction

A signal processing application differs
from the other engineering softwares in
two ways: design and implementation.

The design depends on the mathematic
tools used to model the system [16]. So,
the model will have a simple and an ac-
curate semantics. This semantics will be
as transparent as possible and will not in-
teract with the user’s thought.

In addition, systems are often written
in a graphic way. In such a graph, boxes
are operators and lines are data paths. Be-
cause of the modularity, boxes could be ei-
ther basic operators or complex modules.

A modular design of systems is essen-
tial: it is the basis of imperative languages
such as C, and it allows separate compila-
tion. A module is only known by its inter-
face and its inner implementation remains
hidden to the final user.

Implementation of signal processing
systems require both safety and speed.

Whatever the input values, the safety
protects a system against any deadlock.
In addition, safety attests the existence
of an upper bound of the needed memory
and the computation times. The safety
may be incrementally established module
after module at design time. Because of all
these requirements, this model has to be
built with a formal proof system. Func-
tional languages [1, 4, 19] are built upon
the simple and powerful A-calculus [20],
itself built on mathematics. This tool al-
lows proofs, but it is too expressive and
not specific enough for signal processing
and its implementation will remain ineffi-
cient.

Parallel design of architectures [6] is
expected to increase the speed of applica-
tions.

Implementation of data-flow graphs
are expected to give good results in the
parallelism exploitation [3, 5, 17]. In-



deed, their semantics keeps the parallelism
of the applications, unlike the imperative
languages which forces the programmer to
think in terms of sequences. Only syn-
chronous data-flow are suitable for signal
processing because of time constraints. Of
course, graphic representations of applica-
tions are possible.

The main idea in this work is to use
the best features of both functional and
data-flow concepts. The first one allows
proofs of programs while the second is
suitable for a graphic representation of sig-
nal processing applications while preserv-
ing their inner parallelism.

In this paper, a CAD Tool chain for
signal processing implementation is glob-
ally described. This tool chain includes
a graphical editor of programs (\-graph),
a syntactic language (A\-FLOW), a formal
language (A-matrix), a parallelizer com-
piler and a parallel architecture simulator.
This chain is shown in figure 1.
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Figure 1: A CAD tool chain for parallel

implementation of signal processing.

The whole tool chain is build upon a
main abstract data flow language named
A-matrix!. Proofs of programs and their
behaviors are possible.

Firstly, the graphical editor is de-
scribe (§ 2). Then, the syntactic lan-
guage is shown (§ 3). It is built upon
an abstract functional synchronous data
flow language (§ 4). Then the paral-
lel architecture and its simulator are de-
scribed (§ 5). At least, the parallel com-
piler can be seen (§ 6).

1The “N of “A-matrix” denotes the ability to
write this model with A-expressions [7] and “ma-
trix” is because it is a kind of vectorial calculus.

2 Graphical Editor

The graphical editor A-graph [8] allows
graphical programming in the data flow
style. The used semantics is functional
synchronous data flow (FSDF), based on
an algebraic abstract language, the A\-ma-
trix (§ 4). The layout of this editor can be
seen in figure 2.
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Figure 2: Graphical editor.

On the left side of the window, the
buttons in the command panel allow
the user to create actors with a click
in the canvas area. Actors can be
moved, configured, selected, linked and
destroyed. The clipboard allows easy
cut/copy/paste operations. The data flow
diagram of a second order recursive filter
was drawn in the canvas area in figure 2.
It is constituted with actors (-, i, fby,...)
handles (A’) and links (A—A’). An actor
has some inputs (in top) and some outputs
(in bottom).

An output can only be linked to ei-
ther an input or a handle, and it can only
have one link. Handles can be viewed as
deferred outputs. They have the same
properties than outputs, but they can be
separately moved, selected, linked and de-
stroyed. Inputs, outputs and handles can
have a name (A, A’). Links can be de-
stroyed with a click.

Atoms and applications are configured
according to the current used algebra
(mixed algebra in the same module is
allowed). An algebra defines a data type
featured by its name and its check func-
tion. The check function controls the
value the user enters in the configuration
dialog-box. In addition, several opera-



tors are defined in an algebra. They are
basic entities featured by their signature
that defines the type of the arguments and
the type of the returned value. Operators
only have one output. In the example, +
and - operators are provided by the inte-
ger algebra. In addition, the string "0" is
checked as an integer.

A program (also named a module) is
defined by its body that contains several
actors linked together, inputs and outputs
ports. It can be saved, loaded and printed
in a Postscript form. Modules are orga-
nized in libraries. A module can be copied
into a library, that allows its reuse. In the
example, filter is a main module.

This editor is unable to run a program.
It only can call translators that trans-
form a program into other forms. Sev-
eral translations are possible. The au-
thors are working in a SCHEME translator
that allows direct simulations of programs,
with a special library that contains wave-
generators and wave-viewers. They are
also working in a A-FLOW translator (§ 3).
In addition, other targets can be consid-
ered: SISAL [12], SIGNAL [5], LUSTRE [14],
PTOLEMY with Lee’s Synchronous Data-
Flow (SDF) [17].

A-graph is written with the STK
SCHEME language that interfaces the TK
library [13, 18].

3 Syntactic language

The syntactic description of programs
uses our language named A-FLOW. It is
a user-readable language based upon the
A-matrix semantics (§ 4).

The example described in a graphical
way in the previous section can be written
with this language, as shown in figure 3.

In this example, two modules are writ-
ten, filter and main. The main mod-
ule instantiates the filter module with ar-
gument i#int, the input of the system,
and it names this instantiation instance.
Thus, it reads the output of the filter with
an extraction and writes it in its own out-
put output.

As into A-graph, atoms ("0") and appli-
cation operators (+) are relative to an alge-
bra: they are added to the lexical units of
the language. The used algebra is defined
at compile-time. So, the same A-FLOW

filter = lambda i. BEGIN
g ! +(+(+(4,B),C),D); °’ output

A =-(i,B); ’ definition
B = 0 FOLLOWED-BY D; ’ stream
C=- (4, B); ’ application
D = +(C,E); ’

E = 0 FOLLOWED-BY C;
END
MAIN = BEGIN

instance = filter(i#int);

output ! instance EXTRACT O;
END
Figure 3: Second order recursive filter

with A\-FLoOw

program can have different behaviors, ac-
cording to the used algebra. A-FLOW de-
fines the following objects:

Atoms are the basic expressions of the
language. Natural integers and their asso-
ciated operators, user’s defined data and
their specific operators, identifiers, some
comparators are atoms. Users can specify
their own algebra built upon their data-
type and relative operators. The syntax
of atoms is checked by the algebra. The
integer algebra is available by default be-
cause some A-FLOW operators use integers
as parameters.

Alternative is a choice between two ex-
pressions depending on a condition. It is
written:

IF condition THEN
then-clause

ELSE
else-clause

A-matrices use integer as booleans: 0
denotes false while the others inetgers de-
notes true.

Application acts as a filter of its argu-
ments according to its operator semantics.
It is written:

OPERATOR (arg-1, ..., arg-n)
The semantics of the operator is given
by the used algebra.

Definition allows identifier-value asso-
ciations. In the current environment (see
vector) or in the sub-environments, this



name becomes a synonym of the expres-
sion. It is written:

name = value

Stream allows to write in a functional
way a recurrent equation [3]. A stream
has two parts: state which contains the
initial value and contract for computing
its next values. It is written:

state FOLLOWED-BY contract

All the streams of the program will be
regenerated (the action that updates the
state) in the same time. So, the A-matri-

ces are synchronous.

Vector is a structured object that gath-
ers some expression in an indexed way. A
vector is written:

BEGIN
components-1;

components-n;
END

A vector must has at least one compo-
nent. It defines a frame of an environ-
ment [1]. All the definitions it contains
are visible into all the inner expressions.
Identifiers are statically linked into an en-
vironment, as in the language SCHEME [1].
This statically linkage allows efficient com-
pilation [15]. The top-level environment
contains only the module definitions. In
addition, the A-matrices are referentially
transparent, so, an identifier can be re-
placed with its associated value every-
where it is used.

Extraction can read an indexed value
inside a module. It is an explicit func-
tional mechanism for multi-outputs. It is
written:

indexed EXTRACT index

Indexed must be an identifier, a vector
or a module instantiation. Index can be
either an integer for direct addressing, or
an identifier. If index is an identifier, it
must match with an output with the same
name in indexed (see output). In the ex-
ample in figure 3, the index 0 in the ex-
traction of the main module matches with
the 0 output of the filter.

Output exports a value for extraction.
An output is written:

name ! value

Note that the outputs of the main mod-
ule are outputs of the system.

Module instantiation instantiates a
module with some arguments. Arguments
of the instantiation are statically linked.
It is written as an application:

module (arg-1, ..., arg-n)

Abstraction abstracts an actor with
some parameters. It is written:

lambda p-1, p-2, ..., p-n. actor

Parameters p; are identifiers. The actor
can be a vector or another expression, but
the expression must not contain free vari-
ables. Inputs of the system are identifier
with the form name#type.

This syntactic language is translated
with a parser to the formal A-matrices lan-
guage. In this point of view, A-matrices
can be viewed as internal representations
of the compiler [2].

4 Formal language

A-matrices are an abstract language
with a functional synchronous data flow
semantics [11]. The main goal of this for-
malism is to describe and solve applica-
tions in a functional way, and to prove
time and memory determinisms.

The A-matrices can be entirely imple-
mented with A-expressions [7] that con-
firms the functional feature of the model.
This implementation is interesting be-
cause it shows that the solving expression
of a program is resumed to one A-expres-
sion.

Objects of the language are atoms, al-
ternatives, applications, definitions, nu-
meric extractions, streams and vectors.
This abstract language does not define
symbolic extractions and modules: this is
the role of the syntactic language A-FLOW.
But a primitive modularization is possi-
ble with vectors an numeric extractions.

The solving operator is fully tail-
recursive (the solve operator is the only



part where a recurrent equation is al-
lowed). The solving method alternates
evaluation of the systems that acts as
a valuation of all the expressions of the
program, and regeneration that syn-
chronously recycles all the streams of the
program.

In addition, some criterion functions
are defined. They establish in a proven
way time and memory determinisms of
systems [10].

A closed system does not have any free
variables. So, a definition in the current
environment always matches each encoun-
tered identifier.

When a system does not contain any
fixed-point equation (z = f(z)), it is said
calculable. These equations are detected
with a cycle-detector which operates on
the system definitions. It is proven that
the evaluation of a calculable system al-
ways exists, as well as its regeneration. In
addition, all the regenerated systems from
a calculable system are also calculable.

The amount of memory necessary to
store a stable system is constant during
its solving. This criterion is the more se-
vere of all. It imposes some conditions in
the alternatives, streams and extractions.
All the regenerated systems from a stable
system are also system.

The A-matrices can be either executed
by the abstract machine they define, or
compiled. The structure of the compiler
is in figure 6.

A-matrices
A-matrices
basic
A-matrices
abstract
machine
calculability
stability %%gﬂ?ﬁte
formal
compilation
sequencer
sequential
register
machine

Figure 4: Running \-matrices: a) inter-
pretation mode with the abstract machine,
b) formal compilation to run it in a se-
quential machine.

Only constant? programs can be com-
piled. Then, programs are flatened and
the resulting code is given to a sequencer
that produces the linear code, according
to the selected target.

5 Parallel Architecture

The wanted architecture is shown in fig-
ure 5. Simplicity is its main characteris-
tic.
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Figure 5: Model of the specific parallel ar-
chitecture that implements the A-matrices.

The parallel architecture is a very sim-
ple cheap board built with common con-
trollers. Controllers are directly con-
nected to the bus: sharing of bus ac-
cesses is allocated at compile-time. The
board could be divided into three main
parts: controllers, a common memory
which includes the global RAM and the
1O0s lines, and the main bus. In the
model, one input line and one output line
are connected to converters, themselves
connected to the global bus. These lines
are accessible by address decoding: in the
example, the address 0 is reserved for 10s.

A software simulator [9] of this archi-
tecture was conceived. As shown in fig-
ure 6, cont. 3 is the graphical represen-
tation of one controller. A controller has
its own RAM, ROM, and some registers.
The stack is mapped on the RAM.

The graphic representation of the com-
mon memory can be seen in figure 7. It
can be seen the global RAM which begins
at the address 1, because the address 0
is reserver for 10s. In addition, there are

®The constancy deals with the signature of
data.
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Figure 6: Interface of a controller.

two lists of values: input values read from
the input file, and output values written
into the output file.

Figure 7: Interface of the common mem-
ory, with the common memory and the in-
put and output values list.

Control panel is the graphical rep-
resentation of the main bus, as in fig-
ure 8. Global memory accesses can be
seen for each controller. The system can
be clocked either step by step or in an an-
imation way. Breakpoints can be instan-
tiated for each controller.

Control pannel = |

_

Figure 8: Interface of the main bus.

The complete graphic interface code
takes about 600 lines because the TK in-

terface and its object-oriented layer is par-
ticularly efficient in STK.

6 Parallel Compiler

The solving of a A-matrix has three
steps: input sampling, evaluation-time
and stream regeneration-time. The eval-
uation operator gives a value to each ac-
tor, while the regeneration operator re-
generates stream states. These opera-
tors are said dynamic because they carry
away the current environment built as one
goes along.

initial system

regeneration

%" ut regenerated system output
; : function - E
9 node @
; ; 2 :
q2 I @ a

-

solving

Figure 9: Solving of system.

In figure 9, the solving process com-
putes each component of the target state
vector. The order of these evaluations is
unimportant, but they must be all termi-
nated when the state vector is regener-
ated. It can be thought that the target
vector is copied in the source one, as an
abstracted view of this regeneration. The
solving method clearly separates the par-
allel code from the sequential code: the ex-
ploitation of the parallelism is optimal.

But this mechanism is well adapted
with the assumption of an infinite num-
ber of processors. Indeed, as shown in fig-
ure 9, the node a is twice evaluated. A
temporary variable can be put in place of
the node. The value of this variable is
evaluated, and the resulting value is twice
used. But the introduction of temporary
variables implies some functional depen-
dencies: the node a has to be evaluated
before f, and g3

So, the solving scheduling is shown in
figure 10. Stream are first initialized with
their state value. Then, inputs are sam-
pled, and all the temporary variables are
evaluated depending to their functional
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Figure 10: Scheduling of a data-flow sys-
tem.

dependencies. The stream states are eval-
uated, and we return to input sampling.

Note that in a real implementation,
there is only one state vector: the memory.
So, the stream state evaluations are also
ordered according to their own functional
dependencies.

The list-scheduling produces a list
from the set of tasks, depending on some
considerations. = Here, tasks with the
largest processing time are first cho-
sen: the processing time is the sum of the
duration of the task and the duration of
all its successors [6]. This algorithm has a
O(n?) complexity.

In our model, tasks are divided into in-
structions, themselves composed by read,
write or other instructions. The main idea
of the task interleaving mechanism is to
start a task before all its predecessors are
ended: tasks can read their available in-
puts and only wait for their unavailable
ones, as shown in figure 11.

task 1

input:

body, task 2
} interleave

output:

lependency

Figure 11: These two sequential tasks can
be efficiently interleaved.

In a theoretical way, the gain cannot be
measured, and the GRAHAM 69 limits is
still valid [6]:

w < wopt(2 — ;T)

where w,,; is the duration of the optimal
scheduling and p the number of proces-

sors, with p > 33.
In practice, the interleaving greatly en-

hances the efficiency of program imple-
mentations.

The bus sharing mechanism allocates
a task to each free processor. Then it
tries to write the current instruction of
each processor. The instruction is always
written if it does not use the bus. Other-
wise, the processor are ordered depending
on their own level and the current level. If
the chosen processor want to read a vari-
able that it is not yet available, it tries to
read its others inputs. If it is not possi-
ble, the next processor is chosen.This al-
gorithm has a O(n?) complexity.

7 Furthers works

The main parts of the CAD tool chain was
already conceived: A-graph interface, A-
FLOW language, A-matrices semantic lan-
guage, parallel compiler principles and
parallel simulator.

The authors are currently working to
the code production of the A-matrices
compilation. They want to produce code
for other tools such as PTOLEMY or SISAL.

In addition, the tool chain can compile
only stable programs. The stability crite-
rion is very rigorous and does not allow
recurrent equations inside a program.
The authors work in order to allow recur-
rent equations inside a module without a
cost in the parallelism exploitation.

Another direction is to use the local con-
troller memories as caches of the global
memory. When a controller cannot ac-
cess the bus as it wants, it listens the bus
and copies the transfered data into its lo-
cal memory. This mechanism is expected
to significantly reduce the bus traffic.

8 Conclusion

In this paper, a CAD tool chain is de-
scribed. This chain allows a graphical de-
scription of signal processing programs
and their implementations on a specific
cheap parallel architecture.

The graphical editor is the most user-
friendly interface of the tool chain. Pro-

3This expression does not take into account the
bus sharing.



grams can be edited with some facilities,
such as copy/cut/past operations.

A graphical description can be trans-
lated into a syntactic language. This
language is more powerful than the graph-
ical description and more constructions
can be written. It especially deals with
the modularity concept of an abstract lan-
guage defined for a semantic purpose.

These user-friendly interfaces are based
on a functional synchronous data flow for-
mal language. It defines a full functional
solving method and some criterion func-
tions. Time and memory determinism can
be established in a proven way. This ab-
stract language can be compiled for a spe-
cific parallel architecture.

The parallel architecture that imple-
ments programs of the model is simple and
cheap. It was conceived with the assump-
tion that data transfers can be known at
compile-time. So, the controllers are di-
rectly connected to a common bus that ac-
cesses to the common memory and the IOs
lines. This architecture avoids the man-
agement of the possible access conflicts.

In order to test the principles of the tool
chain in without great investments, a soft-
ware simulator of the parallel architec-
ture is written. It is the last tool of the
tool chain.
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