| anbda- f | ow- draft - version 0.3.1

Guilhem de Wailly

Institut

Preface

This document presents thanbda- f | ow language and its compiler. This is a functional synchronous data-flow
language.

| anbda- f | owcan model every application that can be described with a graph and that does not contain any fix-point
definition. A graphical interface is proposed and it is currently rewriting with the Motif tool-Kkit.

The advantage dfanbda- f | ow is its simplicity for the final user and its adaptabilityanbda- f | ow does not
contain complicated construction, which are difficult to learn, and with a confuse semantics (or a semantics that is
difficult to understand).

The language has the minimal set of objects to model graph based application in a modular way. A module can be
separately compiledl.anbda- f | ow encourages polymorphic module definition in order to have a maximal code
reuse.

It is a strongly typed language, but the type checking is as transparent as possible. It is not necessary to declare
everywhere the type of the handled data: the compiler uses a powerful method to deduce these types from the data.

The language is extremely adaptable to any purpose because the handled data and their operators are not specified in
the language. They form algebra that are text files dynamically loaded into the compiler. The only mandatory algebra
is the integer algebra. Of course, the user can easily write an algebra and use mixed algebra in the same program.

In an other hand,anbda- f | owis adaptable because the target code is not statically specified into the compiler: the
target code definition is a text file dynamically loaded. The standard distribution issues three target code definitions
for C, Scheme and i386 assembler. The user can easily add a target code.

| anbda- f | owwas originated to allow signal processing application to be implemented onto parallel architecture.
The underlined architecture is static because the language guarantees that all the memory accesses are known at
compile-time. This is possible becauserbda- f | owprograms are deterministic in time and in resources.

The compiler is available for major Unix systems and for DOS.

The main feature of the environment are:

» functional synchronous data-flow language, formal proofs easier,
* closed to the Z-formalism,

e data algebra independent, target code independent,

« implicit type-checking, no mandatory type declaration,

* modularity and separate compilation,

e polymorphic or typed abstraction,

» time and resource determinisms,

» low-level code optimization,

» parallelism easily accessible, cheap static parallel architecture proposed,
e could be a specialized chip (ASIC) specification language.

This document could be found in an HTML web page, where the curriculum vitae of the author and the related
publications could also be obtained at the address:

http://alto.unice.fr/ gdw

Contents

1. Introduction

1.1. Existing tools
1.2. Example

. Elements of the language
2.1. Comments

2.2. Identifiers

2.3. Data and operator

2.4. Definition

2.5. Alternative

2.6. Application

2.7. Stream

2.8. Vector

2.9. Output

2.10. Extraction

2.11. Abstraction "
2.12. Abstraction declaration
2.13. Instantiation

2.14. Program

. Semantics aspects
3.1. Closure

3.2. Calculability
3.3. Constancy

. Algebra

4.1. General form

4.2. Regular expression

4.3. Modes o

4.4.1 anbda- f | owmode o

4.4.1. The match self operator (ordinary)

4.4.2. The match-any-character operator (

4.4.3. Repetition Operators

4.4.4. The Alternation Operatdr)

4.4.5. List Operatorg.(.] and[..])

4.4.6. Grouping Operator6.()) .
4.5. | anbda- f | owinteractive regular expression tester
4.6. The integer algebra

. targetcode o .
5.1. General format of the target code
5.2. Target code definition file
5.3. Template strings format

»
o)) »

5B o©ooowo g~

PR
o o

11
11
11
12

14
14
14
14
15
15

15

15
15
16
17
17
18

19
19
19
20

Vi

5.4. General definitions in a target code definition file
5.4.1.extension template

5.4.2. commandtemplate

5.4.3.linear option

5.4.4. comment template

5.4.5.width option

5.4.6.init template

5.4.7. identifier template

5.4.8. alternative template

5.4.9.exit template

5.4.10.pre-start ,pre-init ,pre-loop ,pre-next andpost-next
5.5. Algebra dependent definitions in a target code definition file

5.5.1.init template

5.5.2.data template

5.5.3.declare template

5.5.4.assign template

5.5.5. Operators templates

5.5.6. Input/output operators templates

5.6. Samples of target code definitions

5.6.1. The C target code definition file

5.6.2. The Scheme target code definition file
5.6.3. The 386 assembler target code definition

. The sl ang language

6.1. Introduction

6.2. Variables

6.3. Functions o

6.4. Statementsand Expresswns

6.4.1. Assignment Statements

6.4.2. Binary Operators

6.4.3. Unary Operators

6.4.4. Data Types

6.4.5. Mixing integer and roatlng pomt arlthmetlc
6.4.6. Conditional and Branching Statements
6.4.7. Arrays .

6.4.8. Stack Operators

. Using the compiler

7.1. Compiler command line optlons
7.2. Initialization file

7.3. Compile a single file program
7.4. Invoking the preprocessor

7.5. Compile a multi-files program

. Getting, compiling and installing | anbda- f | ow

8.1. Installation instructions for lambda-flow
8.1.1. Configuring
8.1.2. building

20
20
20
20
21
21
21
21
21
21

22
22
22
22
22
22

23

23

23

23

24

25

28
28
28
28
29
29
30
31
31
32
33
35
36

37
37
38
39
39
39

40
40
40
42

8.1.3. Regression tests

8.1.4. Installing I

8.1.5. Cleaning
8.2. Where to get more information on lambda-flow
8.3. Notes aboutanbda- f | ow

8.4. Porting the program e e e e
8.5. Obtaining the missing pieces of lambda-flow
8.6. Copyright

42
42
42

42

43

Vii

43
43
44

viii

Chapter 1. Introduction

| anbda- f | owis a general purpoganctional synchronous data-flow languagdt is general because the language
does not specify the handled data and their operator (4). These definitialymareically loadedinto the compiler,
at compile-time (7). In addition, the target code is also defined dynamically at compile-time (5).

The language ifully functional . The word fully is important: the language is of course functional in the traditional
meaning, where an expression has not side effect. But in addition, the whole solving process is described in a
functional form. This strong feature emphasizes the semantics definition of the language. Making proofs is easier.

The data-flow property is thienctional translation of the state variablesin a programl anbda- f | ow belongs

to the Lucid family. It was been shown that iterations in a program can be translated by stream definitions, with the
advantage of the functional property. Butrbda- f | owis wanted to be deterministic in time and in resource. Some
constraints have been added to the language, which provides the synchronous feature.

Due to thedeterminismsof the programs, their could be implemented osti@tic parallel architecture. All the
memory accesses are known at compile time, so they can be resolved at this moment.

1.1. Existing tools

A dataflow program is a diagram with lines as data paths and boxes as operations. It exists two methods to run a
dataflow program.

The first method to run a dataflow programs isdla¢a-driven method. When a data is available on each input of

an operator, the operator computes a new data that it puts on its output. The researches on dataflow parallel computers
started withMiller andKarp in 1966. But this kind of dataflow suffers to the lack of a global semantic description

of the program and the inefficiency of the implementations.

The second method to run a dataflow program isigrmand-drivenmethod. Here, a result is asked to an operator.
The operator propagatesthe demand to its empty inputs. When all the inputs data are available, the operator computes
a data and it returns it. This kind of dataflow is closed to the functional programming style.

Functional languageshave all a valuable property: they are built on the mathematically based lambda-calculus.
Functional programming languages can be efficiently implemented onto a clagsicBleumann architecture,
which provides low cost specialized DSP processors and well known programming environments.

The first functional dataflow languageligcid . It is the first to demonstrate that a dataflow programming style can
replace iteration, with the advantage of the functional propertyLBaoid contains several features not well adapted
to DSP. Particularly, it is ndimememory deterministic/.

TheSisalis introduced to implement general purpose FSD program onto parallel architecture. But it is not adapted
for DSP for the same reasons thaurcid.

Lustre andSignalare two FSD languages well adapted for DSP. Their kernelis based on recurrent clocked equations.
Signaldoes not define explicitly a root clock while the clockd.ustre are all defined on a base clock.

Our languagd anbda-f | ow is a part of a CAD tool chain for implementing DSP application onto parallel
architectures. It is more primitive than the languages cited above. It has less expressions and less concepts: it defines
only one temporal operator, used to built a stream of values. The streams are updated in a synchronous way, so, the
language could be used faral-time applications.

It provides thealternative construction (if-then-else). Associated to the stream object, the alternatives could be used
to define some clocks. So, the clock concept is not explicitly defined in the core language.

The integelalgebrais predefined by default. All the other handled data are dynamically bound to an algebra. This
feature gives to the language a great generality and adaptability: it is defined as a “thing to handle some things”,
without specifying the nature of the handled things, such akadhdin’s language.

| anbda- f | ow is atyped language but its type checking has less constrains than the languages cited above: it
encouragepolymorphic abstractions. In addition, it supports a full lexical scope bindirmgbda- f | ow has a

2 Chapter 1. Introduction

graphical interface where the program can be drawn as a dataflow graph.

1.2. Example

In this section, we use thenbda- f | owlanguage to specify a digital filter. The diagram of the filter is given in the
following figure.

| a
*Q
Kafs
=1
- 1 |
T L&A
c
1 c,
Co Y+ Y 0
rO ;_,_\.)"

This is a recursive second order filter. It is very easy to program this filter withda- f | ow: give a name to each
node, replace thé operator by a stream, and you get the program:

filter := lambda i. begin
o la+b+c+d

a:=i-b;

b := 0 followed-by d;

c:=a-e

d =c+ g

e := 0 followed-by c;
end;

Notice the great similarity between this specification and the Z-equétions
In order to simulate a multiple files program, let us defimesin module which instantiatdéter . We obtain:

main := lambda i:int. begin
out ! filter(i) extract o;
end;

Asin the language C, a program must have one and onlynaite module. Its inputs must be typed. In addition, the
outputs of the whole program is the outputs of teen module.

Now, this program has to be compiled with thenbda- f | owcompiler.l anbda- f | ow accepts several options in

the command line (7.1), and it has also a configuration file (7.2). Some options are loaded by default. So, the compiler
invocation is simply:

$ flow filter.If main.If

This command produce an executabledileut . If you want to keep the C auxiliary file, simply type:

$ flow -k filter.If main.If

that produces in addition the followirsge file:

#include <stdio.h>

int getint(int port) {
int tmp;
if (scanf ("%d", &tmp) == EOF) exit(0);
return tmp;

}

#define putint(port,value) printf("%d ", value)

The Z-formalism is a mathematics tool used to study the DSP filter.

1.2. Example

static int d;
static int e;
static int i;
static int out_1;
static int a;
static int b;
static int c;

main() {
start:

init:
i = getint (1);
b = 0;
e = 0;

loop:
a = () - (b)
c=(a - (e)
d = () + (e)

out 1 = putint (1, (@) + ((b) + ((c) + (d)));

next:
i = getint (1);
b = d;
e = ¢
goto loop;

}

Thel anbda- f | ow compiler could also produce Scheme code. Simply type:
$ flow -t scheme -k filter.If main.If

That produces a.scm output file:

(define (getint port) (read))

(define (putint port value) (display value))
(define (bool->int bool) (if bool 1 0))
(define (int->bool int) (if (zero? int) #f #t))

(let* (
)
(let loop (
(i (getint 1))
(b 0)
(e 0)
)
(let* (
@ (- i b)
(- ae)
d (+ c e)
(out_1 (putint 1 (+ a (+ b (+ c d))))
)
(loop

(i (getint 1))
(b d)

4 Chapter 1. Introduction

(e ©)
)
Notice that the Scheme code does not containsafly .
The last command produce Intel 386 code:
$ flow -t i386 -k filter.If main.If
That produces a.s output file:

.data
d .word
e .word

i .word
out_ 1 1 .word
out_ 1 2 .word
out_ 1 3 .word
out 1 .word

a .word
b .word
c .word
text

main:

init:

in 1

mov.w i, ax
mov.w b, O
mov.w e, 0
loop:

sub.w i, b
mov.w a, ax
sub.w a, e
mov.w ¢, ax
add.w c, e
mov.w d, ax
addw c, d

mov.w out_1_1, ax
add.w b, out_1_1
mov.w out_1_2, ax
add.w a, out_1_2
mov.w out_1 3, ax
mov.w ax, out_ 1 3
out 1

mov.w out_1, ax

next:
in 1
mov.w i, ax
mov.w b, d
mov.w e, C

jimp loop

end:
The power ofl anmbda- f | ow is demonstrated with the code production os three very differents languages: C as

1.2. Example 5

imperative language, Scheme as functional language and i386 assembiler.

In fact, the target code is defined in a target code definition file that is a text file dynamically loaded into the compiler.
The user could extent the standard target definition file very easily.

Chapter 2. Elements of the language

2.1. Comments

| anbda- f | ow uses theC++ comment forms. A comment start froth to the end of the line. A comment could
also start from* to*/ , which allows multi-lines comments.

2.2. Identifiers

All'the string of characterswithout blanks and special characters are identifiers. A blank is one or more mixed spaces,
tab or newline. Special characters fite ?:\.;,! ; they are used as keywords in the language. for example:

toto fooéé #er 123

are four identifiers. Notice tha23 is not recognized as an integer, as in the traditional language, but as an identifier,
as explained in the next section.

2.3. Data and operator

| anbda- f | owdoes not specify the data and their associated operators. These specifications are written in an algebra
file, dynamically loaded in the compiler (4). Such an algebra defines an regular expression (4.2) to identify an
identifier as its own datd.anbda- f | ow supports several regular expressions modes (4.3. By default, it uses the
mode used by the lexical pardex . The regular expression used to identifier the integers is:

check = flow: "[+-]?[0-9]+"

This definition is a part an an algebra file. The way to build a new algebra is explained later, when the real algebra
is defined (ref id=algebra t=X//).

I anbda- f | owdefines by default the integer algebra, because it needs the integer. The type associated to this algebra
isint . This algebra is described in a fitlgeger.alg (4.6).

An operator inl ambda- f | ow is also defined in the algebra file. It has a name, a signature and a comment. For
example, the line that defines the addition integer operator in the integer algebra file is:

+ = int->int->int, integer addition

where+ is the operator nama->int->int the signature anidteger addition the comment. The signature
is given in the denotational form where the right-most type is the type of the value returned by the operator, and the
others types are the type of the arguments.

Of course] anbda- f | ow can deals with operator with identical name. For exampletehle addition operator
could be defined as:

+ = real->real->real, real addition

When thet+ operator is encountereldanbda- f | ow checks the signature of the arguments, and chooses the good
operatorl anbda- f | ow does not defined a type-tower as in the other language. Such a mechanism could convert
an integer into a real if it is added to a real.

2.4. Definition

A definition allows to associate a name to a value. Notice we use the verb associate and ndtassigaf | ow
is a language with equations, not an imperative one. Everywhere in the current environment, the name becomes
a synonym of the associated value. The environment mechanism is explained later. For example:

baz is foo;

2.4. Definition 7

foo is 3;
defines two identifierBaz andfoo .baz is associated to the valfie andfoo is associated to the valde

Notice that the order of the definitions is not important: hiexe, is definedafterbaz usesit. Butir anbda- f | ow,
the wordafter has no meaning.

The value of a definition could be whateverarbda- f | owexpression. The name must be an identifier. In addition,
a definition cannot occurs inside another expression suftoass baz := 3 . A definition is named a root
object.

In | ambda- f | ow, an expression must be ended with the charagteuch as in the most popular languages.
If an identifier is defined twice, only the first definition is considered.

| anbda- f | owsupportstwo syntax levels:a long-syntax mode and a short-syntax mode. The long mode uses explicit
keyword, such as while the short mode uses symbols. The symbol associated i®:= . The example given
above become:

baz := foo;
foo = 3;

2.5. Alternative

An alternative is a choice between two expressions calletthéreclausand theelse-clausaccording to @ondition
Here, itisimportantto forget the notion of side effect, bechasdda- f | owhas no side effect. So, itis notimportant
to know if theconditionis evaluated before thiben-clausgor if only one of thehen-clauser theelse-clausés
evaluated. For example:

if x then 1 else 2;

is an alternative. Its value depends on the value of the identifi€he condition, and the two clauses could be
whatever a non-rodtanbda- f | ow expression. The condition must have the integer signayskays the role of
false and the other integers play the roletofe .

The other syntax used for alternativesis:
X ?1: 2
The alternative object allows to build multi-rate programs.

2.6. Application

An application applies some arguments to an operator. For example:
+ (1, 2);
is the application of the operaterto the argument and2. In order to choose the good operatarpbda- f | ow

first checks the signature of the arguments. In this expression, they are integer with the signatlitesn, it can
choose among the loaded algebra an operator with the name with two integer arguments.

When an application has two arguments, it can be written in a more traditional way, such as:
1+ 2

In this written, the two blanks between the operator are mandatory. Without any béartida- f | ow understand
the identifierl+2.

2.7. Stream

The stream allows the time to be handled in a program. It is a functional view of a state variable.

Inimperative languages, the main elementsisthe storage cellsand the way to accessthem. Generally,a celliseccessed
with the given name of the variable. A cell has a type, and only a value with the same type can be assigned.

With these two accesses mode, the imperative language naturally define the sequence, generally known as the control
flow of the program. For an assignment instruction into a cell, there are two worlds: the world before the assignment,
and the world after. The main problem with the assignment mechanism is the impossibility to know the state of a

8 Chapter 2. Elements of the language

big program at an instant, due to explosion of the state number.

The stream of data-flow languages is the functional expression of a state variable: it defines its initial value, and
the way to compute all the next values. So it is possible to know the state of a program at each instant of its life. The
gain is that a data-flow program supports formal proofs.

Inl ambda- f | ow, the stream expression is particularly simple: a stream is composed with an initial value named the
state and the expression of all the next values, namedtiméract For example:

0 followed-by 1;

defines the stream of the intedgefollowed by the integet. The authors of the language Lucid use the following
syntax to deal with such a stream:they wflie 1, 1, ...} .If the expression is the strean{l,2,3,..} ,the
streany defined as:

y := 0 followed-by x + 1;

is evaluated af®, 1, 2, 3, ...} . The streanx could be defined with the expression:

x := 1 followed-by x + 1;

Streams can also be written with the short syntax, such as:

X =1x + 1;

2.8. Vector

Avector gathers some expression togetherin a same object. A vector starts with the keggirordnd ends with the

wordend. All the expressions it contains must be separated witlfthe last could be omitted). For example:

begin
1

end;

is a vector. A vector plays the role of an environment frame: all the definition (2.4) it contains are visible in all
the expressions it contains, even if they are vectors. Because a vector can contain a vector, a nested-environment
mechanism is defined. In the vector above, the defined idenfifemslx are visible in all the expression the vector
contains. In the following example:
begin

a =1

b := begin

= 2;

= 3;
= a + c

o 0 o

end;
end;

the evaluation ofl is 5. The identifiera is named a free variable of the vectdr In this way, the free variables of
a vector could be view as the inputs of a module. The vector object is the primitive tool for modularizing programs.
This tool is greatly improved by the abstraction object.

Notice that the expression contained in a vector can be root expression, such the definition.
The other syntax for the vector is:
[

x —
o
- N

2.9. Output

An output is a root expression. It is used to explicitly export an expression outside of a vector. It is written:

2.9. Output 9

foo output 1 + 3;

that exports the identifieioo outside of the vector that contains it. Of course, the variable of the the exported
expression is bound in the environment where it is written. Notice this expression is not a definition: the identifier
foo is not defined in the vector that contains it.

The other output syntax is:

foo! 1 + 3;

2.10. Extraction

The extraction object is the counterpart of the output object: it can read an exported expression inside a vector. Itis
composed with an indexed expression and an index expressions, and it is written:

s = begin x!1; y!2; z!I3; end;

t := s extract y;

Notice thatl anbda- f | owdoes not attempt to bind the index identifier to the current environment: it tries to find a
corresponding output in the indexed vector.

If there are two outputs with the same identifier in the indexed expression, only the first one is considered.

In this first version of anbda- f | ow, the indexed expression must be either a vector, or an identifier that refers to
a vector or the instantiation (see below) of a vector.

| anbda- f | ow supports numerical extraction where the index expression is an integer. The integer index is the
numerical 1-based position of the indexed expression. In order to keep the functional property of the language, the
first component of the indexed expression is returned if the index value does is not a valid index.

So, itis possible to write:

table := [123; 432; 234; 556;];

coef := table extract x + 1,

In this casel, anbda- f | owgenerates the code:

The other syntax for the extraction is:

table := [123; 432; 234; 556;];

coef = if (x + 1) = 1 then table extract 1
else if (x + 1) 2 then table extract 2
else if (x + 1) = 3 then table extract 3

else if (x + 1) = 4 then table extract 4
else table extract 1;

As it can been see, if the index has not the good value, the default result is the first component of the table.
The short extraction syntax is:
coef := table . x + 1;

2.11. Abstraction

The abstraction object allows useful modularization of the applications. In order to keep the determinisms of the
applications, the abstraction constructs are severely limited: they are not as powerful as in the lambda-calculus.
Particularly, it is impossible to write thécombinator, and all recursive construction. An abstraction is closest than

the macro definition, such as in the C language. It is written:

lambda a, b, c. expr
where the identifiea, b andc are the parameters of the abstraction, anctipe the abstracted expression.

If expr hasa, b orc as free variable, they are bound to the parameters that take their values where the abstraction
is instantiated (2.13).

Notice the parameters could be typed or not. To add a type to a parameter, simply type:
lambda a:typel, b:type2, c:type3. expr
wheretypes are the type names of loaded algebra. For exarmpleis a valid type name. Mixing typed and untyped

10 Chapter 2. Elements of the language

parametersis allowed.

The use of untypeded parameter encourages polymorphic definitions. For example, the following expression is
defined whatever the type of the given arguments, if there is the opératerd be found in a loaded albegra.

sqr = lambda a. a * a;
The short syntax for an abstraction is:
\'a, b, c. expr

2.12. Abstraction declaration

Becausé anbda- f | ow allows the separate compilation of the source files, it is needed to declare the abstractions
used in a file, without define them.

This is achieve with the writing :

lambda a, b, c

without any body. Generally, this object is used with a definition.

2.13. Instantiation

The instantiation syntax is identical than the application syntax.sfheabstraction defined above is instantiated

with the writing:

foo = sqr (3);

The underlined mechanism of the instantiation is closest to the macro-replacement than a function call. In fact, the
body of the abstraction is put in place of the instantiation. Of course, this seems very simplenBda- f | ow

keeps the static lexical binding, and this point is the main difficulty: the free variables of an abstraction are linked

in the environmenivhere the abstraction is defined instead of the environment where the abstraction is used. This
kind of binding is very useful and currently used in almost the modern functional language.

2.14. Program

Al anbda- f | owprogram is a set of expressions which can be fit in several files. Among all these expressions, there
is one module named tmeain module. It is a definition witimain as identifier that defines an abstraction with or
without parameters.

If they are, the parametemsust be have a typethey play the role of the inputs of the program.

The body of the abstraction must be a vector. It could contain several outputs: in this case, they are the outputs of the
application.

One of these outputs could play the role of the stopping condition: the program stops when the value of this output
is reach a non-zero value. The stopping condition is specified as an option of the compiler command line (7.1).

Chapter 3. Semantics aspects

The compiler performs a strong verification of the programs before produces the target code. This verification checks
if all the used identifiers are defined, if there is no-recursive cycles and then, it performs a type checking.

3.1. Closure

The closure deals with the variable definitions. An expression is closed if all the used identifiers are defined. Because
| anbda- f | ow allows a separate compilation, it is not an error if an identifier is not defined, but in this case, the
code production is avoided.

| anmbda- f | owhas a static lexical scope strategy for the identifier. This way is more clearest for the final user than
the dynamic lexical scope. Let us take this example:
a = 3
f := lambda x. x + a;
begin

a = 4

f Q)
end;
Inthis toy example, the free identifierof f is linked to the topmost definition @f, and not to the inside the vector:
the identifiers are linked in thaefinition placanstead of thaise placeThis rule is very natural for the final user,
but it severely complicated the compiler.

I anbda- f | owallows the separate compilation of the programs. The separate compilation produdea- f | ow
program where all the known identifiers were bound to their value.

3.2. Calculability

The calculability deals with the cycle-detection in a program. The time determinism constraint imposes to forbid
such cycles. There are two kind of cycld ianbda- f | ow: the fix-point equations, and the recurrent ones.

A fix-point occurs when an identifier needs the value it has to be evaluated. For example:

X = X + 1;

defines a fix-point equation on Some fix-point equations have a solution, and some have no solution. But they are
all evaluated in an indeterministic duration. In a program, cycle are sometime as direct as in the example above, but

sometime, they are difficult to find. In order to keep the time determinism of the programsja- f | ow rejects
programs that contain fix-point equations.

A recurrent equation has the same form than a fix-point equation, but the identifier is considered at two different
instants. For example:

x = 0 followed-by x + 1;

defined the stream of the natural integer, which can be writteri, 2, ...} . The twox are considered at
two different instants. This construction is the functional representation of a variable in imperative languages. The
difference is that the evolution of the variable is perfectly known with a stream definition.

Butl anbda- f | owhasto check cycle in the stream contract itself. For example, the contract of the following stream
cannot be evaluated:

x = [0; 0] followed-by [a:=a + 1; 2];
because the definition @f creates a fix-point equation.
| anbda- f | owuses a complex algorithm to find the cycles. For example, the following graph:

11

12 Chapter 3. Semantics aspects

i a module X

does not contains any cycle. It could be implemented with:

module := lambda a, b. begin
x | a;
y ! b

end;

instance := module (i, 0%);

0 ‘= instance . Xx;
0 = instance . vy;

whereinstance s the instance ofnodule . It is clear that the definition of seems to create a cycle. The analysis
of such instantiation is complex.

3.3. Constancy

The constancy deals with the type-checklragrbda- f | owhas a type strategy very natural for the final user: explicit
type declarations can be entirely avoided for a program, except for the main inputs. The main inputs must be signed
asmain := lambda inl : typel, in2 : type2, ...

The signaturdsof the expressions are deduced from the type of the data, and when they exist, the type of the
parameter. A data has only one typamrbda- f | owdoes notimplementsthe types tower, asin some other languages:
the user has to convert explicitly the data on need.

The construction of the language allows the compiler to be always able to deduce the signature of the expressions.
This encourage the polymorphic definitions. For example, the following abstraction:

sum := lambda init, unit. [
state := init followed-by state + unit;
out ! state;

I

is type independent. For exampdem could be instantiated with:
integers := sum(0, 1) . out;

or with:

complexes := sum(0+i0, 1+i0);

wherea+ib is recognized by the complex algebrm these two instantiations, theoperator is not the same: in

the first instantiation, it is the integer addition operator while in the second instantiation, it is the complex addition
operator. Thesum abstraction is polymorphic because it could be used with all the algebra that defime the
operator.

If the sum abstraction is wanted to be defined only for the complex, its definition could be replaced with:

sum := lambda init:complex, unit:complex. [
state := init followed-by state + unit;
out I state;

I

the wordtypeis prefered for the date, and the waignatureis prefered for the other expressions.

Notice that 0+i0 is not recognized @gollowed by+,i ando, but as an alone string recognized by the complex algebra

3.3. Constancy 13

With this new definition, the instantiatieum(0, 1) produces a compiler error because the given arguments have
not the good type.

The polymorph feature is very useful for the designer that conceives general programs.

Chapter 4. Algebra

An algebra is composed by a data-type and some operators. The data-type is materialized with a regular expression
(4.2) that recognizes or not the given string. The operators are composed with a name, a signature and a comment.

The number of algebra is not limited, and an algebra could use the type of other algebra.
In this section, we will discuss about the default integer algebra file which could be found in the distribution.

4.1. General form

The text file that describes an algebra has this form:

[type]

name = int

comment = Basic algebra for integer arithmetic
check = flow: "[+-]?[0-9]+"

[operators]

+/- = int->int, change sign

+ = int->int->int, addition

where,int is the type name. Theheck field is discussed above. The number of the operator is not limited. The
signature of the operator could use type of other algebra. For example, itis possible to add an integer to real converter
operator with:

[operators]

int2real = int->real, integer to real convert

The operator name is not reserved. For examplegtile algebra also defines the addition operator with:
+ = real->real->real, addition
The integer addition and the real addition are distinguished with the type of their arguments.

It is important to notice that the algebra do not specify the meaning of the operator, but only the way to know
them.

The more important part of an algebra definition is the regular expression, explained in the next section.

4.2. Regular expression
| anbda- f | ow uses regular expressions loaded from an algebra file to recognizes the data. A kind of regular
expression is the operating systems shells that replac¢edharacter with all the files of the current directory.

More generally, a regular expressionis a text string that describes some set of strings. A regular expnessioes
a strings if s isin the set of strings described by

4.3. Modes

Thel anmbda- f | owregular implementation is based on thgex package oKarthryn A. Hargreaves andKarl

Berry (ftp: /prep.ai.mit/).

| anbda- f | owallows several regular expression mode. The mode is the first world. In the integer regular expression,
the mode iglow .

The mode could be eitherawk, grep , egrep , ed, sed, posix-awk , posix_egrep , posix_basic
posix-minimal , posix-extended , posix-minimal-extended or flow .

14

4.3. Modes 15

Allthe mode names correspond to programs of the UNIX system. The simplest rflode ihat implementsregular
expressions closest to the lexical paiser.

4.4. | anbda-f | owmode

Thel ambda- f | ow regular expression mode is closest to the lexical pdeser A regular expression is a string
where each character is an operator.

4.4.1. The match self operator (ordinary)

This operator matches the character itself. All ordinary characters represent this operator. For éx@saplays
an ordinary character, so the regular expreskigratches only the strirfg In particular, it does not match the string
ff .

4.4.2. The match-any-character operator.()

This operator concatenates two regular expressiargdb. No character represents this operator; you simply put
b aftera. The result is a regular expression that will match a strirgrifatches its first part arfdmatches the rest.
For examplexy (two match-self operators) matches

4.4.3. Repetition Operators

Repetition operators repeat the preceding regular expression a specified number of times.

4.4.3.1 The Match-zero-or-more Operator {)

This operator repeats the smallest possible preceding regular expression as many times as necessary (including zero)
to match the patterri. represents this operator. For exampte matches any string made up of zero or mose

Since this operator operates on the smallest preceding regular expr&gsibas a repeating, not a repeatingp .

So,fo* matcheg , fo ,foo ,and so on.

4.4.3.2 The Match-one-or-more Operator {)

This operator is similar to the match-zero-or-more operator except that it repeats the preceding regular expression
at least once for what it operates on, how some syntax bits affect it.

For examplega+r matches, e.gcar andcaaaar , but noter .

4.4.3.3 The Match-zero-or-one Operator¥)

This operator is similar to the match-zero-or-more operator except that it repeats the preceding regular expression
once or not at all to see what it operates on, how some syntax bits affect it.

For exampleca?r matches botlear andcr , but nothing else.

4.4.3.4 Interval Operators (...})

« {count} matches exactlyount occurrences of the preceding regular expression ;

« {min,}} matchesnin or more occurrences of the preceding regular expression ;

« {min, max} matches at leastin but no more thamax occurrences of the preceding regular expression.

The interval expression (but not necessarily the regular expression that contains it) is invalid rheitisegreater
thanmax, or any ofcount , min, or max are outside the range zero@6535 .

4.4.4. The Alternation Operator ()

Alternatives match one of a choice of regular expressions: if you put the character(s) representing the alternation
operator between any two regular expressaasdb, the result matches the union of the strings thahdb match.
For examplefoolbar|jquux would match any ofoo , bar or quux.

16 Chapter 4. Algebra

The alternation operator operates on lgrgestpossible surrounding regular expressions. (Put another way, it has
the lowest precedence of any regular expression operator). Thus, the only way you can delimit its arguments is to
use grouping. For example (ifand) are the open and close-group operators, fo@fb)ar ~ would match either

fooar orfobar . (foolbar would matchfoo or bar .)

The matcher usually tries all combinations of alternatives so as to match the longest possible string. For example,
when matchingfooq|foo)*(gbarquux|bar) againsfoogbarquux , it cannot take, say, the first (“depth-first”)
combination it could match, since then it would be content to matcligogbar .

4.45. ListOperators(...] and[..])

Lists also calledbracket expressionare a set of one or more items. Alemis a character, a character class
expression, or a range expression. The syntax bits affect which kinds of items you can put in a list. We explain the
last two items in subsections below. Empty lists are invalid.

A matching listmatches a single character represented by one of the list items. You form a matching list by enclosing
one or more items within aopen-matching-list operatdrepresented bly) and aclose-list operato(represented

by1).
For examplefab] matches eithes or b. [ad]* matches the empty string and any string composed ofyjastd
d in any order. A regular expression with @&ut no matching is considered as invalid.

Non-matching listare similar to matching lists except that they match a single chanasteepresented by one
of the list items. You use ampen-nonmatching-list operatgrepresented bf?) instead of an open-matching-list
operator to start a nonmatching list.

The is not considered to be the first character in the list. If you put a character first in (what you think is) a matching list, you'll turn it into a
nonmatching list.

4.4.1 anbda- f | owmode 17

For example] ab] matches any character exceptr b.
Most characters lose any special meaning inside a list. The special characters inside a list follow.

*] endsthe listif it's not the first list item. So, if you want to make theharacter a list item, you must put it
first;

* [representsthe open-character-class operator if what follows is a valid character class expression ;

e] representsthe close-character-classoperator if what precedesitis an open-character-class operator followed
by a valid character class name ;

e - represents the range operator if it's not first or last in a list or the ending point of a range.

All other characters are ordinary. For examptg, matches and*.

4.4.5.1 Character Class Operators[(-..1])

A character class expressianatches one character from a given class. You form a character class expression
by putting a character class name betweenopen-character-class operatofrepresented by:) and a
close-character-class operat@represented by). The character class names and their meanings are:

e alnum letters and digits

« alpha letters

e digit digits

* lower lowercase letters

e punct neither control nor alphanumeric characters
e upper uppercase letters

e xdigit hexadecimal digit9—-9, a—f ,A-F

These correspond to the definitions in the C libractype.h facility. For examplef:alpha:] correspondsto the
standard facilitysalpha . character class expressions are recognized only inside of lifitalsita:]] matches

any letter, buf:alpha:] outside of a bracket expression and not followed by a repetition operator matches just
itself.

4.4.5.2 The Range Operator-()

Range expressiomspresent those characters that fall between two elements in the current collating sequence. You
form a range expression by puttingange operatobetween two charactérs represents the range operator. For
examplea-f within a list represents all the characters frarthroughf inclusively.

4.4.6. Grouping Operators(...))

A group also known as aubexpressigrtonsists of ampen-group operatqrany number of other operators, and
a close-group operatofThis sequence is treated as a unit, just as mathematics and programming languages treat a
parenthesized expression as a unit.

Therefore, usingroups you can:
e delimit the argument(s) to an alternation operator or a repetition operator ;

« keeptrack of the indices of the substring that matched a given group. This lets you either use the back-reference
operator or use registers.

4.5, | anmbda- f | owinteractive regular expression tester

Thel anbda- f | ow compiler offers a reasonable interactive tool to test the regular expressions. Simply type in the
command line:

$ flow -regExCheck

You can't use a character class for the starting or ending point of a range, since a character class is not a single character.

18 Chapter 4. Algebra

The compiler enters in an interactive mode and waits on a prompt. There are three levels, where you can chose the
mode, enter the regular expression and test some strings. To leave a level in order to go in the upper level, simply
type ENTER(typing ENTERin the mode selection level leaves the compiler).

The mode selection level let you chose the regular expression mode among the one cited above. On the prompt, type
the selected mode. For example, tyjpe .

Then you are in the regular expression selection level. Here, you can either return to the mode selection level with
ENTERor enter a regular expression. For example, enter the regular expression of the integefal{rinel+ ,
and then, presSNTER

Then, you are in the string test level where you can test some string. Here, you can return to the upper level with
ENTEROr test a string. For example, typ23. The compiler displaysiatch because the entered string matches to
the entered regular expression. Now, tyge and the compiler responds match .

Press the keENTERthree times to return to the operating system.

4.6. The integer algebra

Here, we show the complete integer algebra provided Mdttbda- f | ow:

[type]

name = int

comment = Basic algebra for integer arithmetic

check = flow: "[+-]?[0-9]+"

[operators]

+/- = int->int, change sign

+ = int->int->int, add

- = int->int->int, subtract

* = int->int->int, multiply

/ = int->int->int, divide

% = int->int->int, modulo

= = int->int->int, equality
= int->int->int, greater

< = int->int->int, smaller

>= = int->int->int, greaterEq

<= = int->int->int, smallerEq

<> = int->int->int, different

<< = int->int->int, shift left

>> = int->int->int, shift left

& = int->int->int, shift right

| = int->int->int, shift right

&& = int->int->int, shift right

Il = int->int->int, shift right
zero = int->int, is zero

Chapter 5. target code

| anmbda- f | owis independent with the target code that is defined in a file c#dlegbt code definitionTherefore,
the produced code has always the same structure, as shown in the next section.

5.1. General format of the target code

The | anmbda- f | ow produced code has always the same structure. This structure is independent with the real
produced code, specified in tteget code definition file

I general initialization|

|| algebra initializationg

I variable declaration#

start section |

[—

init section |

loop section |

next section |
|

The code has an initialization phase, a temporary variable evaluation and a stream regeneration phase. Then it does
a loop.

generalinitialization: initialization of the whole program. Here, some files could included, or some global variables
initialized ;

algebrainitialization: each used algebra could initialize itself here. An algebra could initializes a variable or defines
some things ;

variables declarations:all the inputs, the stream states and the temporary variables are declared here;

start section:this section of code compute all the necessary values for stream initialization. Notice that the stream
states are not initialized here;

init section: the inputs and the stream states are initialized here, possibly with the values computestart the
section

loop section:the loop section compute all the temporary variables used to compute the outputs of the program and
the next stream state values;

next section:the new values of the stream state are assigned here, as the new values of the inputs;

loop: this section contains the code to jump to ifie section

5.2. Target code definition file

A target code definition filETCDF) is a text file that implement the operators of the algebra in a specific target code.
It is organized with two main parts: a general definition part and an algebra implementations part.

The TCDF is based on template strings. A template string is a string where some value could placed. A well

19

20 Chapter 5. target code

know template string form is the @intf() function format string, where théxtemplates are replaced with the
corresponding values.

Each template in a TCDF has a hame and a template string value. For example, a template could be:
command = "gcc %S %s -0 %s"

that defines theommand template as the strintycc %s -o %s” . The TCDF supports several template string
formats, as explained in the next section.

5.3. Template strings format
A template string is the value of a template. The TCDF has three template string format:

simple string :the value of the template isthe given string without any replacement. The stringis written as s,
without any syntactic marker, ésmplate = the value . This string could be empty if a value is optional;

“printf()” format : the value of the template is a string where séfs@appear. The whole string is written
into*” . The number ofesis determined by the considered template. For examplepthenandtemplate has
three values: the command options, the command input file and the command output file, given to the template
string in this order. Using this format allows replacement in the string;

slang() format :thesl ang template string format has the following forstang (parameters) {slang
function body} whereparameters are the name of the parameters, andy thesl ang function body.
Thecommandtemplate string could be replaced wstang (opt, in, out) {return Sprintf (“gcc
%s %s -0", opt, in, out, 3);} . Thesl ang language is explained in a next section (6).

5.4. General definitions in a target code definition file

The general definitions in a TCDF are grouped under the segd@et] . Under this section there are several
template and several options, as explained above.

5.4.1. extension template

This template is the extension of the file generated by #mbda- f | ow compiler when the user want to keep the
auxiliary file. This template has no argument.

Theextension template of the C-TCDF is:

extension = ¢

5.4.2. commandtemplate
Thecommandtemplate is the post-compiler to run aftexnbda- f | ow has produced the auxiliary file. Generally,
it is either a compiler or an interpreter.

Thistemplate has three arguments, the command options, the input file which is the auxiliary file name and the output
file name specified by the user.

Thecommandtemplate of the C-TCDF is:

command = "gcc %s %s -0 %s"

5.4.3.linear option

The linear option is eitheryes or no. It is not a template, but an option. When it is set ytes,

| anbda- f | owproduces a linear code.

Thelinear template of the C-TCDF is:

linear = yes

With the C language, this option could be because the C language supports recursive expression construction.

5.4. General definitions in a target code definition file 21

5.4.4. comment template

The comment template is the line-comment form of the target language. It has one argument, the string to be
commented in the auxiliary file.

Thecomment template of the C-TCDF is:

comment = "/* %s */"

5.4.5. width option

Thewidth option indicate the indentation used lbgnbda- f | owin the auxiliary file to put its comments.
Theextension template of the C-TCDF is:
width = 50

5.4.6.init template

Theinit template is a text to put on the top of the auxiliary file. It has no argument. It could be used to declare and
initialize somesl ang variables.

Theinit template of the C-TCDF is:

init ="\

[*C TARGET CODE*\

#include <stdio.h>\n"

This definition shows that the template string could be written in more than one line, with the escape chatacter
the end of the inner lines.

This template has thgintf() format to allow the charactén to be replaced with a newline in the output file.

5.4.7. identifier template
Theidentifier template has one argument,anidentifier name. It is used to allows the identifier name to be conform
to the target languagkanbda- f | ow generates identifier that contains numeric value and underscore character.

This template could be used to replace these characters if the target language does not support them in the identifier
name.

Theextension template of the C TCDF is:
identifier = "%s"

5.4.8. alternative template

The alternative template is the translation in the target language of the alternative. It has three argument, the
condition which isan integer where 0 denotes the false value and the other values denote the true ones, the then-clause
and the else-clause.

If thelinear option is not set, the argument could be complex expression. If it is set, the argument are either simple
data or identifier.

Thealternative template of the C TCDF is:
alternative = (%s) ? (%s) : (%s)

5.4.9.exit template

Theexit template is used to check if the stopping condition is reached. It has one argument, the stopping condition.
Generally, this template call thrxit command of the target language.

Theexit template of the C TCDF is:

exit = "if (%s) exit(0);"

22 Chapter 5. target code

5.4.10.pre-start , pre-init , pre-loop ,pre-next andpost-next templates

These templates are placed on the top of the corresponding sections,mstepikt placed on the bottom of
thenext section (5.1).

These templates have no argument.

These templates of the C TCDF are:

pre-start = "\nmain() {\n start:"
pre-init = "\n init"

pre-loop = "\n loop:"
pre-next = "\n next"
post-next =" goto loop;\n}"

5.5. Algebra dependent definitions in a target code definition file

For each algebra supported by the considered target code, a section must be created in the TCDF, with the type name
of the algebra. In the C TCDF, it can be found fing section that correspond to the integer algebra.

This section defines some general template, and the templates of all the supported operators of the algebra.

5.5.1.init template

This template is used to initialize the algebra (4) in the considered target code. This template has no argument.
Theinit template of the C TCDF for the integer algebrais:
init = /* get/putint functions *\
int getint(int port) {\
int tmp;\
if (scanf ("%%d", &mp) == EOF) exit(0);\
return tmp;\

N
#define putint(port,value) printf("%%d ", value)\n

5.5.2.data template
This template is used to convert a data recognized bghbek regular expression of the corresponding algebra
(4.1) into a data of the target code.

This template has one argument, the data. This template is generally used with the assembler languages that have to
prefix the direct data.

Thedata template of the C TCDF for the integer algebrais:

data = "%s"

5.5.3.declare template

This template is used in the declaration section (5.1) to declare the identifier with the considered type.

It has two arguments, a type name and an identifier. The identifier is treated ildgrtiieer> template of
the TCDF (5.4.7). The type name is the type used by the algebra (4.1).

Thedeclare template of the C TCDF for the integer algebra is:
declare = "%s %s;"

5.5.4.assign template

This template is used in all the sections of the auxiliary file to put a value in the variables. It has two arguments, the
identifier name and the value.

The identifier is treated by thdentifier> template of the TCDF (5.4.7).

5.5. Algebra dependent definitions in a target code definition file 23

The value is the production of one of the target templates.
Theassign template of the C TCDF for the integer algebra is:
assign = "%s = %s;"

5.5.5. Operators templates

For each used operator of an algebraybda- f | owmust find a template in the TCDF.

The template is formed with the signature of the operator, followed by the template string itself. The number of
argument of the template string depends on the considered operator.

For example, the template of the C TCDF for the integer algebra is for thperator defined in the algebra (4.6)
is:

+ = int->int->int, "(%s) + (%s)"

5.5.6. Input/output operators templates

For each algebra, the TCDF must contains two additional operators which are not defined in the algebra: they are the
input/output operator.

| anbda- f | ow uses the nam@in and @out for these operators. The input operator has one argument, the input
port number, as an integer. It returned value has the type of the considered algebra.

The output operator has two arguments, the output port number as an integer and the output value. The type of the
second argument depends on the considered algebra.

The template of the C TCDF for the integer algebra is for the input/output operators are:
@in
@out

Notice that the non-standard C functigetint() andputint() are defined in thait template of the integer
algebra of the C TCDF (5.5.1).

int->int, "getint (%s)"
int->int->int, "putint (%s, %s)"

5.6. Samples of target code definitions

In this section, we present three TCDF for three very different language, such as C, Scheme and the 386 assembler.

5.6.1. The C target code definition file

24
[target]
extension =c
command = "gcc %s %s -0 %s"
linear = yes
comment = "I* %s */"
width = 50
init = #include <stdio.h>\n
identifier = "%s"
alternative = "(%s) ? (%s) : (%s)"
pre-start = \nmain() {\n start:
pre-init = "\n init:"
pre-loop = "\n loop:"
exit =" if (%s) exit(0);"
pre-next = "\n next:"
post-next =" goto loop;\n}"
[int]
declare = "static int %s;"
assign =" %s = %s;"
init = "[* get/putint functions *A\
int getint(int port) {\

int tmp;\

if (scanf ("%%d", &mp) == EOF) exit(0);\

return tmp;\

N

#define putint(port,value) printf("%%d ", value)\n"

data

&&
|

Zero
@in
@out

= "0s"
= int->int, " (%s)"

= int->int->int, "(%s) + (%s)"
= int->int->int, "(%s) - (%s)"
= int->int->int, "(%s) * (%s)"
= int->int->int, "(%s) | (%s)"
= int->int->int, "(%s) % (%s)"
= int->int->int, "(%s) == (%s)"
= int->int->int, "(%s) > (%s)"
= int->int->int, "(%s) < (%s)"
= int->int->int, "(%s) >= (%s)"
= int->int->int, "(%s) <= (%s)"
= int->int->int, "(%s) = (%s)"
= int->int->int, "(%s) << (%s)"
= int->int->int, "(%s) >> (%s)"
= int->int->int, "(%s) & (%s)"

= int->int->int, "(%s) | (%s)"

= int->int->int, "(%s) && (%s)"

= int->int->int, "(%s) || (%s)"
= int->int, "(%s)"
= int->int, "getint (%s)"
= int->int->int, "putint (%s, %s)"

5.6.2. The Scheme target code definition file

Chapter 5. target code

5.6. Samples of target code definitions

[target]

extension = scm
command =

linear = no
comment =" %s"
width = 50

init =

identifier = "%s"
alternative = "(if %s %s %s)"

pre-start = "(let* ("

pre-init =" N\n(let loop ("
pre-loop =" Nn(let* ("

exit = "(if (not (zero? %s)) (exit))"
pre-next =" N\n(loop "
post-next = "YPN\n"

[int]

declare =

assign =" (%s %s)"

init = ", get/putint functions\

(define (getint port) (read))\

(define (putint port value) (display value))\
(define (bool->int bool) (if bool 1 0))\

(define (int->bool int) (if (zero? int) #f #t))\n"

data = "%s"
+/- = int->int, "(- %s)"
+ = int->int->int, "(+ %s %s)"
- = int->int->int, "(- %s %s)"
* = int->int->int, "(* %s %s)"
/ = int->int->int, "(/ %s %s)"
% = int->int->int, "(modulo %s %s)"
= = int->int->int, "(bool->int (eq? %s 9%s))"
= int->int->int, "(bool->int (> %s %s))"
< = int->int->int, "(bool->int (< %s %s))"
>= = int->int->int, "(bool->int (>= %s %s))"
<= = int->int->int, "(bool->int (<= %s %s))"
<> = int->int->int, "(not (eq? %s %s)))"
<< = int->int->int, "* %s (* 2 %s))"
>> = int->int->int, "(inexact->exact (/ %s (* 2 %s))"
& = int->int->int, "(error)"
[= int->int->int, "(error)"
&& = int->int->int, "(bool->int (and (int->bool %s)(int->bool %s)))"
I = int->int->int, "(bool->int (or (int->bool %s)(int->bool %s)))"
Zero = int->int, "(zero? %s)"
@in = int->int, "(getint %s)"
@out = int->int->int, "(putint %s 9%s)"

5.6.3. The 386 assembler target code definition

This TCDF intensively uses ths ang language to perfor proper assembly output.

[target]
extension =s

25

26

command = "gas %s %s -0 %s"
linear = yes
comment =" %s"
width =20
init =slang () {\
return ".data";\
h

variable label = 0;\
define alternative (al, _cond, a2, _then, _else) {\

label++;\
return Sprintf ("L_if %d: \n \
cmp %s, %s \n \
j%s L_then_%d \n \
L_else_%d:\n%s \n \
jmp L_end %d \n\
L_then_%d:\n%s \n \
jmp L_end %d \n\
L_end_%d:", \
label, al, a2, _cond, label, \
label, _else, label, \
label, _then, label, label\
12))\
}
identifier = "%s"
alternative = slang (_cond, _then, _else) {\
variable __then = Sprintf (" mov.w ax, %s", _then, 1)\
__else = Sprintf (" mov.w ax, %s", _else, 1))\
return alternative (_cond, "ne", "0", _ then, _ else);\
}
pre-start = "\n\n.text\nmain:"
pre-init = "\ninit:"
pre-loop = "\nloop:"
exit = "\nexit\n cmp.w %s, O\n je continue\n jmp end\n\ncontinue:"
pre-next = "\nnext:"
post-next = "\n jmp loop\n\nend:\n"
[int]
init =
declare =" %s .word"
assign = slang (name, value){\
if (is_substr (value, " ")\
return Sprintf ("%s\n mov.w %s, ax", value, name, 2);\
else \
return Sprintf (" mov.w %s, %s", name, value, 2);\
}
init =
data = "$%s"
+/- = int->int, " neg.w ax"
+ = int->int->int, " add.w %s, %s"
- = int->int->int, " sub.w %s, %s"
* = int->int->int, " mov.w ax, %s\n imul.w %s"
/ = int->int->int, " mov.w ax, %s\n idiv.w %s"
% = int->int->int, " mov.w cx, %s\n \

mov.w ax, cx\n \
mov.w bx, %s\n \

Chapter 5. target code

5.6. Samples of target code definitions

idiv.w bx\n \
sub.w cx, ax"
= = int->int->int, slang (al, a2) {
return alternative (al, "eq", a2, \
" mov.w ax, 1", " mov.w ax, 0");

}
> = int->int->int, slang (al, a2) {
return alternative (al, "g", a2, \
" mov.w ax, 1", " mov.w ax, 0");
}
< = int->int->int, slang (al, a2) {
return alternative (al, "I, a2, \
" mov.w ax, 1", " mov.w ax, 0");
}
>= = int->int->int, slang (al, a2) {
return alternative (al, "ge", a2, \
" mov.w ax, 1", " mov.w ax, 0");
}
<= = int->int->int, slang (al, a2) {
return alternative (al, "le", a2, \
" mov.w ax, 1", " mov.w ax, 0");
}
<> = int->int->int, slang (al, a2) {
return alternative (al, "ne", a2, \
" mov.w ax, 1", " mov.w ax, 0");
}
<< = int->int->int, " shl %s, %s"
>> = int->int->int, " shr %s, %s"
& = int->int->int, " and %s, %s"
[= int->int->int, " or %s, %s"
= int->int->int, " xor %s, %s"
&& = int->int->int, slang (al, a2) {\
variable _else = alternative (a2, "e", "0", \
" mov.w ax, 0", " mov.w ax, 1");\
return alternative (al, "e", "0", " mov.w ax, 0"
_else))\
}
[l = int->int->int, slang (al, a2) {\
variable _then = alternative (a2, "e", "0", \
" mov.w ax, 0", " mov.w ax, 1");\
return alternative (al, "e", "0", \
_then, "movw ax, 1");\
}
zero = int->int, slang (al, a2) {
return alternative (al, "e", "0", \
" mov.w ax, 1", " mov.w ax, 0);
}
@in = int->int, "in %s"
@out = int->int->int, slang (port, value) {\

return Sprintf (" mov.w ax, %s\n out %s"\
value, port, 2);\

Chapter 6. Thesl ang language

Thesl ang language comes from the packagelohn E. Daviswhich can be obtained in
ftp://space.mit.edu/pub/davis/slang/
In this section, we present a subset of this language useful for the TCDF template string.

6.1. Introduction

sl ang (pronounced “sssslang”) is a powerful stack based interpreter that supports a C-like syntax. It has been
designed from the beginning to be easily embedded into a program to make it extehsibéealso provides a way

to quickly develop and debug the application embedding it in a safe and efficient mannekISingaesembles

C,itis easy torecodgl ang proceduresin C if the need arises.

Thesl ang language features both global variables and local variables, branching and looping constructs, as well
as user defined functions. Unlike many interpreted languagesg allows functions to be dynamically loaded
(function auto-loading). It also provides constructs specifically designed for error handling and recovery as well as
debugging aids (e.qg., trace-backs).

The core language currently implements signed integer, string, and floating point data types. Applications may also
create new types specific to the application (e.g., complex numbers). In adsliteary, supports multidimensional
arrays those types as well as any application defined types.

The syntax of the language is quite simple and is very similar to C. Unlike&hg variables are untyped and inherit
a type upon assignment. The actual type checking is performed at run time. In addition, there is limited support for
pointers.

6.2. Variables

sl ang is an untyped language and only requires that an variable be declared before it is used. Variables are declared
using thevariable keyword followed by a comma separated list of variable names, e.g.,

variable larry, curly, moe;

As in C, all statements must end with a semi-colon. Variables can be declared to bgleitia¢or local. Variables
defined inside functions are of the local variety and have no meaning outside the function.

It is legal to execute statements in a variable declaration list. That is,
variable x = 1, y = sin (x);
are legal variable declarations. This also provides a convenient way of initializing a variable.

The variable’s type is determined when the variable is assigned a value. For example, in the above exsaple,
integer and is a float sinced is an integer and th&n function returns a floating point type.

6.3. Functions

Like variables, functions must be declared before they may be usedeline keyword is used for this purpose.
For example,

define factorial ();

is sufficient to declare a function namé&adtorial . Unlike variable keyword, thedefine keyword does not
accept a list of names. Usually, the above form is used only for recursive functions. The function name is almost
always followed by a parameter list and the body of the function, e.g.,

define my_function (x, y, z) {

28

6.3. Functions 29

<body of function>
}

Herex,y, andz are also implicitly declared as local variables. In addition, the function body must be enclosed in
braces.

Functions may return zero, one or more values. For example,

define sum_and_diff (x, y) {
variable sum, diff;

sum = x + vy, diff = x - vy;
return sum, diff;

}

is a function returning two values.

Please note when calling a function that returns a value, the value returned cannot be ignored. See the section below
on assignment statements for more information about this important point.

6.4. Statements and Expressions

A statement may occur globally outside of functions or locally within functions. If the expression occurs inside a
function, it is executed only when the function is called. However, statements which occur outside a function context
are evaluated immediately.

All statements must end in a semi-colon.

6.4.1. Assignment Statements

An assignment statement follows the syntax:
<ttiable name> = <expression>;
Whitespace is required dyothsides of the equal sign. For example,
X = sin (y);
is correct but
x =sin(y); x= sin(y); x=sin(y);
will generate syntax errors.
Often, functions return more than one value. For example,
define sum_and_diff (x, y) {
return x + vy, x -,
}
returns two values. The most general assignment statement syntax is
(<var_1>,<var_2>,...,<var_n>) = <expression>;
e.g.,
(s, d) = sum_and_diff (10, 2);
To ignore one of the return values, simply omit the variable name from the list. For example,
(s,) = sum_and_diff (10, 2);
may be used if one is only interested in the first return value.

Some functions return a variable number of values. Usually, the first value will indicate the actual number of return
values.

For example, thégets function returns either one or two values. If the first value is zero, there is no other return
value. In this case, one must use another form of assignment since the previously discussed forms are inadequate.
For example,

n = fgets (fd);

if (n 1= 0) {

30 Chapter 6. Thel ang language

}

Inthis example, the first value returned is assigneddod tested. If it is non-zero, the second return value is assigned
tos. The empty set of parenthesis is required.

Please note that RETURN VALUES CANNOT BE IGNORED. There are several ways of dealing with a return value
when one does not care about it. For example, the funfftish returns a value. However, most C programs that
call this function almost always ignore the return valuesllang, one can use any of the following forms:

variable dummy;
dummy = fflush (fd);

O = fflush (fd);

fflush (fd); pop ();
The second form is perhaps the most clear way of indicating that the return value is being ignored.

6.4.2. Binary Operators

sl ang supports a variety of binary operators. These include the usual arithmetic operators (, andmod), the
comparison operators,(>=, <, <=, != , and==) as well boolean operators(andand) and bitwise operator$ (\& ,
xor ,shl andshr). Like the assignment operator, these operators must also be surrounded by whitespace. That is,

X =y + z
is a legal statement but = y+z; isnot legal.

To use these operators effectively, in addition to understanding the meaning of the operation, one must also
understand the precedence level of the operator.

In sl ang, there are only three levels of precedence. The highest level consists*qf/ flamdmod operators. The

second level consists of theand- operators. All other binary operators fall into the last level of precedence. Within

a precedence level, operators are evaluated left to right. Parenthesis may be used to change the order of evaluation.
For example, the expression:

a==>borc ==
IS NOT the same as:
(@ == b) or (c == d)

since== andor share the same level of precedence. In fact, the expression without parenthesis is evaluated left to
right and is equivalentt@@a == b) or a) == ¢

Finally,s! ang supports the increment and decrement operatoend-—, and the arithmetic assignment operators
+= and-= . Presently, these operators only work with integer types and a type mismatch error will result from the
use of these operators with other types.

These following table shows the meaning of these operators.

Expression Meaning
++X; X =X + 1;
X++; X =X + 1;
—X; X =X - 1;
X—; X =X - 1;
X += n; X = X + n;
X -= n; X = X - n;

Note thats| ang does not distinguish betwean and—x since neither of these forms return a value as they do in
C. With this in mind, do not use constructs such as:

while (i-) % test then decrement
while (—i) % decrement first then test

6.4. Statements and Expressions 31

Instead, use something like

while (i, i) % test then decrement
while (i-, i) % decrement first then test

These operators work only on simple scalar variables. In partiedla), is NOT the same astx and will generate
an error.

Whenever possible, these latter four operations should be used since they execute 2 to 3 times faster than the longer
forms.

6.4.2.1 Short Circuit Boolean Evaluation

The boolean operators andand ARE NOT SHORT CIRCUITED as they are in some languagéang uses
theorelse andandelse operators for short circuit boolean evaluation. However, these are not binary operators.
Expressions of the form:

<expr_1> and <expr_2> and <expr_3> ... and <expr_n>

can be replaced by the short circuited version uaimiglse :

andelse {<expr_1>} {<expr_2>} {<expr_3>} ... {<expr_n>}

A similar syntax holds for therelse operator. For example, consider the statement:
if (x!'=0) and (1 / x < 10)) do_something ();

Here, ifx were to have a value of zero, a division by zero error would occur because even thbugh evaluates
to zero, theand operator is not short circuited and th&/ expression would be evaluated. For this casegilelse
operator could be used to avoid this problem:

if (andelse
{x 1= 0}
{1/ x < 10}) do_something ();

6.4.3. Unary Operators

The UNARY operators operate only upon a single integer. They are defined by the following table below. In this
table, the variable is an integer type and represents either a floating point or integer variable.

Unary Expr. Meaning

not (i) if i is non-zero return zero else return non-zero (i) bitwise
not

sqr(x) the square of x

mul2(x) multiplies x by 2

chs (x) change the sign of x

-X same as chs (x)

sign (x) +1 if x >0, -1 if x < 0, and O if x equals 0

abs (x) absolute value of x

Note the following points:

e Allunary operators excepibt and operator on both integer and floating point types.

e The! operator used in C is not usedshang, not must be used instead.

e The bitwise not operator must enclose its argument in parenthesisll be flagged as a syntax error.

e Some applications which embstiang may overload these operators to work with application defined data
types.

6.4.4. Data Types

Currentlys! ang only supportsinteger, floating point (double precision),and character string data types. It is possible
for an application that embeds$ ang to define other, application specific, data types (e.g., complex numbers). In
addition, the language supports arrays of any of these types (including application specific types).

32 Chapter 6. Thel ang language

6.4.4.1 Integers
Unsigned integers are not supported. An integer can be specified in one of several ways:

* Asadecimalinteger consisting of the charadddtsough9, e.g.127. The number cannot begin with a leading
0. That is,0127 is not the same a7 .

e Using hexadecimal (base 16) notation consisting of the chardrters andA throughF. The hexadecimal
number must be preceded by the characters-or exampleQx7F is the same thing as decind7.

* In Octal notation using characte¥ghrough7. The Octal number must begin with a leadihg-or example,
0177 is the same thing &7 decimal.

» Using character notation containing a character enclosed in single qudtes.aehe value of the integer
specified this way will lie in the range 0 to 256 and will be determined by the ASCII value of the character in
quoggg,. For example,

i =0,

results in a value of 48 far since the charactérhas an ASCII value of 48.
Strictly speakings!| ang has no character type.

Any integer may be preceded by a minus sign to indicate that it is a negative integer.

6.4.4.2 Floating Point Numbers

Floating point numbers must contain either a decimal point or an exponent (or both). Here are examples of specifying
the same floating point number:

12.,, 12.0, 12e0, 1.2el, 120e-1, .12e2

Note thatl2 is NOT a floating point number since it contains neither a decimal point nor an exponent. if2fact,
is an integer.

6.4.4.3 Strings
A literal string must be enclosed in double quotes as in:
"This is a string".

Although there is no imposed limit on the length of a string, literal strings must be less than 256 characters. It is
possible to go beyond this limit by string concatenation. Any character except a newline (ASCII 10) or the null
character (ASCII 0) may appear in thefinition> of the string.

The backslash is a special character and is used to include special characters (such as a newline character) in the
string. The special characters recognized are:

\" — double quote

\ — single quote

\\ — backslash

\a — bell character

\t — tab character

\n — newline character

\e — escape (S-Lang extension)

\xhhh — character expressed in HEXADECIMAL notation
\ooo - character expressed in OCTAL notation

\dnnn — character expressed in DECIMAL (S-Lang extension)

For example, to include the double quote character as part of the string, it is to be preceded by a backslash character,
e.g.,
"This is a \"quote\""

6.4.5. Mixing integer and floating point arithmetic

If a binary operation (+, -, *, /) is performed on two integers, the result is an integer. If at least one of the operands
is a float, the other is converted to float and the result is float. For example:

11/ 2 —> 5 (integer)

6.4. Statements and Expressions 33

11/ 2.0 —> 5.5 (float)
110/ 2 —> 5.5 (float)
11.0 / 2.0 —> 5.5 (float)

Finally note that only integers may be used as array indices, for loop control variables, shl, shr, etc bit operations.
Again, if there is any doubt, use the conversion functionsandfloat where appropriate:

int (1.5) —> 1 (integer)
float(1.5) —> 1.5 (float)
float (1) —> 1.0 (float)

6.4.6. Conditional and Branching Statements
sl ang supports a wide variety of looping/file ,do while ,loop ,for ,forever ,and_for)and branchingf ,
lif ,else ,andelse ,orelse ,andswitch) statements.

These constructs operate on code statements grouped togditumki®A block is a sequence af ang statements
enclosed in braces and may contain other blocks. However, a block cannot include function declarations; function
declarations must take place at the top level. In the followdtsgement refersto either a singld ang statement

or to a block of statements afichlock } refersto a block of statements.

6.4.6.1if, if-else
if (expression) statement;

Evaluatesstatement if the result ofexpression is non-zero. Theéf statement can also be followed by an
else :

if (expression) statement; else statement;

6.4.6.2lif
lif (expression) statement;

Evaluatestatement if expression is evaluatesto zero. Note that there isifielse statement.

6.4.6.3 orelse, andelse
These constructs were discussed earlier. The syntax forélse statement is:
orelse { block } { block } ... { block }.

This causes each of the blocks to be executed in turn until one of them returns a non-zero integer value. The result
of this statement is the integer value returned by the last block executed. For example,

orelse { 0; } { 6, } {2} {3}

returnss since the second block returns the non-zero reésaiid the last two block will not get executed.
The syntax for thendelse statementis:

andelse { block } { block } ... { block }.

Each of the blocks will be executed in turn until one of them returns a zero value. The result of this statement is the
integer value returned by the last block executed. For example,

andelse { 6; } {2,}{0;} {4}
returns0 since the third block will be the last to execute.

6.4.6.4 while

while (expression) statement;

Repeastatement while expression returns non-zero. For example,
j=20; i = 10; while () {j=j+i;i=1i-1;}

will cause the block to execute 10 times.

34 Chapter 6. Thel ang language

6.4.6.5 do-while
do statement; while (expression);

Executestatement then tesexpression . Repeat whileexpression is returns non-zero. This guarantees that
statement will be executed at least once.

6.4.6.6 for
for (exprl; expr2; expr3) statement;

Evaluateexprl first. Then loop executingtatement while expr2 returns non-zero. After every evaluation of
statement evaluateexpr3 . For example,

variable i, sum;
sum = O;
for (i = 1; i <= 10; i++) sum += i;

computes the sum of the first 10 integers.

6.4.6.7 loop
loop (n) statement;

Evaluatestatement n times. Ifn is less than zerstatement is not executed.

6.4.6.8 forever
forever statement;

Loop evaluating statement forever. Forever means until eithevak orreturn statement is executed.

6.4.6.9 switch
The switch statement deviates the most from its C counterpart. The syntax is:
switch (x)

{..: .}

{..: .}
Here the object is pushed onto the stack and the sequence of blocks is executedopkeator is &! ang special
symbol which means to test the top item on the stack, if it is non-zero, the rest of the block is executed and control
then passes out of the switch statement. If the test is false, execution of the block is terminated and the processrepeats
for the next block.

The special keywordase may be used to compare the value of objects. It returns non-zero if the objects correspond
to the same object and zero otherwise.

For example:

variable x = 3;

switch (x)
{ case 1: print("Number is one.")}
{ case 2: print("Number is two.")}
{ case 3: print("Number is three.")}
{ case 4: print("Number is four.")}
{ case 5: print("Number is five.")}

{ pop(); print ("Number is greater than five.")}

Herex is assigned a value of 3 and theitch statement pushes the 3 onto the stack. Control then passes to the first
block. The first block uses thmse construct to compare the top top stack item (3) with 1. This test will result with
zero at the top of the stack. Theoperator will then pop the top stack item and if it is zero, control will be passed

to the next block where the process will be repeated. In this case, control will pass to the second block and on to
the third block. When the operator is executed for the third block, a non-zero value will be left on the top of the
stack and therint function will be called. Control then passes onto the statement following the last block of the

6.4. Statements and Expressions 35

switch statement.

Note that, in this example, the last block does not test the valiagéinst anything. Instead, if this block is executed,
the top stack item (the value gfin this case) will be removed from the stack by pog function and the rest of the
block executed.

Unlike most other languages with some form of switch statemeltgs not have to be a simple integer. For example,
the following is perfectly acceptable:

variable x;
X = "three";
switch (x)
{ case "one": print("Number is 1.")}
{ case "two": print("Number is 2.")}
{ case "three": print("Number is 3.")}
{ case "four": print("Number is 4.")}
{ case "five": print("Number is 5.")}
{ pop(); print ("Number is greater than 5.")}

Again, thecase function is used to test the top stack item and the last block serves as a “catch-all”.

6.4.6.10break, return, continue

sl ang alsoincludesthe non-local transfer functiogtarn |, break ,andcontinue .Thereturn statement causes
control to return to the calling function while tiheeak andcontinue statements are used in the context of loop
structures. Here is an example:

define fun () {

forever
{
si;
S2;

if (condition_1) break;
if (condition_2) return;
if (condition_3) continue;

S3;
s4;

}

Here, a functioriun has been defined that include®eever loop which consists of statemests, s2, ...s3 and

3 boolean conditions. Aslong asndition_1 , condition_2 , andcondition_3 return O, statementd , s2, ...,

s3 will be repeatedly executed. Howevergidndition_1 returns a non-zero value, theeak statement will get
executed, and control will pass out of tteeever loop to the statement immediately following the loop which in
this case is4. Similarly, if condition_2 returns a non-zero numbegfurn will cause control to pass back to the
caller offun . Finally, thecontinue statement will cause control to pass back to the start of the loop, skipping the
statemens3 altogether.

6.4.7. Arrays

Arraysare created using the function cadlate_array . The type of the array and the size of the array are specified
by parameters to this function. The calling syntax is:

X = create_array (<type>, i_1, i_2 ... i_dim, dim);

Here adim dimensional array of type specified bype is created. The size of the array in théa dimension is
specified by the parameterd ..i_n parameter. Thgjpe parameter may be any one of the values given in the
following table:

Parameter Type of array

36 Chapter 6. Thel ang language

'S’ array of strings

' array of floats

T array of integers
'C array of characters

Other integer values for the type may be given for applications which defined application specific types to create
arrays of those types.
In the current implementatiodim cannot be larger than 3. Also note that space is dynamically allocated for the

array and that, upon assignment, copies of the array are NEVER used. Rather, referencesto the array are used by the
assignment statements.

For example:

variable a = create_array ('F’, 10, 20, 1);

variable b = a;

This creates a 2 dimensional 10 x 20 array of 200 floats and assigrs e second statement makes the variable
b also refer to the array specified by variable

Accessing a specific element of the array may be accomplished by placing the “coordinates” of the elementin square
brackets. For example, to access the (3, 4) element of the above ar@g,ugg . Note that this differs from the
way the C language specifies array access and that, like the C language, array subscripts start from O.

Finally, array notation may also be used for extracting characters from a string. For example, if one has:
variable ch, s = "Hello World";
thench = s[0] could be used to extract the first character from the stridpwever, this syntax cannot be used
to replace charactersin the string, isf0] = ch isillegal and will generate an error. For the latter case, one must
either use thetrsub function or use a character array.
Examples:
Here is a function that computes the trace (sum of the diagonal elements) of a square 2 dimensional n x n array:
define array_trace (a, n) {
variable sum = 0, i;
for i = 0; i < n; i++) sum = sum + a]i, iJ;
return sum;
}
This fragment creates a 10 x 10 integer array, sets its diagonal elements to 5, and then computes the trace of the
array:
variable a, j, the_trace;
a = create_array('l', 10, 10, 2);
for = 0; J < 10; j++) a[j, j] = 5;
the_trace = array_trace(a, 10);

6.4.8. Stack Operators

The use of local variables greatly simplifies the task of maintaining the stack. Neverthkebgss|s really a stack
based language and there are times when they are useful.

pop % removes the top object from the stack
dup % duplicates the top object on the stack
exch % exchanges top 2 objects on the stack

These operators work on all data types — they are not limited to integers.

Chapter 7. Using the compiler

7.1. Compiler command line options

The compiler is invoked with the following command:

$ flow [option]* [files]*

wherefoption] is zero or more options of the list given above, #iies] is zero or mode source files.

All the options have a long name that begin witlCertain options have also a short single character name that begin
with - . The possible options dfanbda- f | owcompiler are:

[-algebra | -a] alg load algebra ‘alg’ (4). The name could be a complete file name, such as
\ usrVlocalVlibVflowVinteger.alg/, or more simply the naimgeger is the path of the file is added in the
standard path with thepath option.

—analysis analysis only the input file in order to check the error.
[-compile|-c] compile only the input file.

—convert parse the inputs files. Used with thgroup option, this allows the user to know hdvanbda- f | ow
has grouped the expression. Used with+sieort option, this allows the conversion between the short and the
long syntax.

—errors err set the max error count to ‘err’. If ‘err’is 0, there is no error count limit. This is not recommended
because if your program is too cyclic, the compiler could display a lot of errors.

—group groups expressions in parse result with parenthesizes.
[<help | -h] display thd ambda- f | ow help.

[keep | -k] keepauxiliaryfiles. The auxiliary file are produced layrbda- f | owand given to the post-compiler.
With this option| anbda- f | owdo not erase the auxiliary file.

—license display thd ambda- f | owlicense.
—linear forces output code to be linearized.

—log file sets the log file to ‘file’. If file is ‘stderr’, the standard error file is uskdobda- f | ow could be
extremely verbose (see theerbose option). Generally, the displayed messages are used to understand how
| anbda- f | ow work, or to debug it. If you do not understand an error display by the compiler, use the log
file.

[-output | -o] file set the output file to “file’. This file is used with the€ompile option to produce a file
named ‘file’. It is also used as auxiliary file, with the target extension added (5.4.1), and as output file of the
post compiler (5.4.2).

[-path | -p] path adds ‘path’ as a standard program patimbda- f | ow keep a list of path. It uses this list
when you try to open a file not in the current path. This list is used for the source files, the algebra definition
files and the target code definition files. The other way to add a standard path is to define it with the environment
variableLAMBDA_FLOW_PAT(deveral paths could be added this way, if they are separated Wwith

—pcos opts post-compiler options set to ‘opts’. This option allow to give some additional options to the
post-compiler.

37

38 Chapter 7. Using the compiler

—ppos opts preprocessor options set to ‘ppos’l inbda- f | owis compiled with the preprocessor support, this
option allows to give some options to the preprocessor.

—regExCheck run thel anbda- f | ow compiler as the regular expression interactive test (4.2). Then, the user can
checks its regular expressions.

—regress regression tests. Ifanbda- f | owis compiled with the regression test support, it could be run on
the provided regressions test file. A regression filelia@bda- f | ow source file where the name has a special
format. The name is composed witkx-y.z ~ wherexxx could besyn (syntactic test)sem (semantics test),
com (compilation test)cod (code production test) @xe (runtime test)y the test number andthe number
of error found byl anbda- f | ow (x for an undetermined number of error).

—regressSet with this option| anbda- f | ow set the error value to the given regression test file.
—short The compiler display the conversion result with the short syntax.

—stop out The stopping condition of the source program is set to the output (Irethieda- f | owmeaning) ‘out’.
The evaluation of the stopping condition is done withékié template (5.4.9).

[-target | -t] trg Set the target output code to ‘tgr’. The option could be a complete target file name such as
\usr\ localVlibVflow\Vc.trg/ or simply the name of the target sucttas the corresponding target file path is
added with the-path option.

[-verbiage | -v] n verbose operation levelissetto ‘n’.nisalogical or of the value giveninthe VERBIAGE
file in the root directory of the distribution.

—width n set the indent width to ‘n’for the comments that the compiler generate.

7.2. Initialization file

In order to avoid long command lineanmbda- f | ow support some options to be put in an initialization file. The
name of this file idlow.ini /.

The compiler first tries to load this file in the current working directory, then in the user home directory, and in the
library installation directory, and at least in the directory where the compiler executable is installed.

This file has the following form:

[flow]

errors = 50

path = /usr/local/lib/flow
algebra = integer boolean
target =c

libraries = default.If

default = debug.If

verbiage = 65535
preprocessor = cpp -P %s %s -0 %s
logfile = flow.log

where:

errors set the maximal error count ;

path adds some blank separated paths as standard paths ;
algebra loads the blank separated algebra

target loads the target code definition file;

libraries load always the file specified in this list;

default if no source files are specified on the command line, loads this default file;

7.2. Initialization file 39

verbiage set the verbiage level ;
preprocessor set the preprocessor ;

log file setthe log file.

7.3. Compile a single file program

The simplest form of programming Iranbda- f | owis to keep the sources in a single file.
In order to invoke the compiler on the file that contain our example (1.2), just type:
$ flow example.lf

The default option are set in tlilew.ini file (7.2). By default, the C target code is chosen. You can see in your
working directory a filea.out produced by the post-compiler of the C TCDF, which is sefcto (5.6.1).

If you want to see the C auxiliary file produced lbyrrbda- f | ow, use thek command line option, that avoid the
auxiliary file to be deleted. Just type:

$ flow example.lf -k

Notice the place of the option is not important with the compiler. This command producea fild you want to
have another target code, simply type:

$ flow -t scheme example.lf

which produce a file.scm which is a Scheme source file. If you want to specify your own algebra, you could
use:

$ flow -a /path/my-algebra.alg example.lf

7.4. Invoking the preprocessor

Before processes the source filapbda- f | ow could use a preprocessor. You can specify the preprocessor in the
file.ini file. Notice that the anbda- f | ow parser automatically detects tiine directive produced by the C
preprocessor.

You could pass some options to the preprocessor with a command line option. Simply type:

$ flow -ppos “-I. -Dlow_noise" example.If

and the preprocessor is invoked with the optionDlow_noise . Notice the use of’ around the options.
So you can include some header files with#imelude directive of the C preprocessor.

7.5. Compile a multi-files program

| anbda- f | ow is able to compile a source file separately. Due to the nature of the language, it is impossible to
produce target code for partial source fllanbda- f | ow produce d anbda- f | ow flattened program, with the
same interface.

If your project haved_1.If ,f_2.0f ..., f_nlIf assource files, you can invoke the compiler for each source file
with;

$ flow ¢ f ilf -0 f ilo

where-c is compile-only option, and whefei.lo isthe produced file. Then, you can link all these file together
with:

$ flow f_1.o f 2.lo ... f_n.lo -0 a.out
which produces the executable (according to the target optionr) .

Chapter 8. Getting, compiling and installing
| anbda- f | ow

This chapter contains:
« Installation instructions and notes for lambda-flow
* Where to get more information on lambda-flow

* Common problems
» Information on porting the program
e Obtaining the missing pieces of lambda-flow

8.1. Installation instructions for lambda-flow

Theconfigure shell script attempts to guess correct values for various system-dependent variables used during
compilation, and creates the Makefile. It also creates adilég.status that you can run in the future to recreate
the current configuration.

To compile this package:

8.1.1. Configuring

Normally, you justcd to the directory containing the package’s source code and. typefigure/. If you're using
csh on an old version of System V, you might need to tgpeconfigure instead to preverish from trying to
executeconfigure itself (under AlX, you may need to use ksh instead of sh).

Runningconfigure takes a while. While it is running, it prints some messages that tell what it is doing. If you don’t
wantto see any messages,canfigure with its standard output redirectedtdev/null/; for example) configure
\>V/devVnull/.

To compile the package in a different directory from the one containing the source code, you must use a version
of make that supports th&PATHvariable, such as GNihake. cd to the directory where you want the object files

and executables to go and run tlemfigure script.configure automatically checks for the source code in the
directory thatconfigure isin and in.. . If for some reasomonfigure is not in the source code directory that

you are configuring, then it will report that it can’t find the source code. In that case, run ‘configure/ with the option
—srcdir=DIR , where DIR is the directory that contains the source code.

By defaultmake install will install the package’s files in usr/local/bin/, usr/local/man/, etc. You can specify an
installation prefix other than usr/local/ by giviegnfigure the option—prefix=PATH . Alternately, you can do
so by consistently giving a value for tpeefix variable when you rumake, e.g.,

$ make prefix=/usr/gnu
$ make prefix=/usr/gnu install

You need to have the package regex installed. You can specify the path of regex.o with the configure option
—with-regex-o=fullpath filename/.

| anbda- f | owis recommended to be compiled with the slang package. You can specify the slang library path with
the configure optionwith-slang-lib=filename .flename willbe added to the linker option aflename
If the path is not the standard, use the configure optiibdir=fullpath

| anbda- f | owcan be compiled with the garbage collector frblians-J. Boehm and Alan J. DemersYou can use
the configure optiorwith-gc-lib=filename .filename will be added to the linker options aflename

If the path is not the standard, use the configure optiibdir=fullpath . If you cannot get a proper GC library,
the configure optiorwithout-gc could be used. In this case, $lambdaFlow willloc() memory allocator
without anyfree() call. In fact, this is not a real problem becausebda- f | owis designed to use carefully the
memory. The DOS version does not have a garbage collector.

40

8.1. Installation instructions for lambda-flow 41

configure also recognizes the following options:

elp Print a summary of the options tonfigure , and exit.

—quiet

—silent Do not print messages saying which checks are being made.

—verbose Print the results of the checks.

—version Print the version of Autoconf used to generatedbigfigure script, and exit.
—includedir=PATH PATH is an additional path for the c header files

—libdir=PATH PATH is an additional path for the c library files

—with-cc=CC uses another c compiler. This option is used to obtain a DOS binary-witt-cc=gcc-dos
The default c compiler is detected bynfigure

—without-gc do not use the garbage collector GC. By default, GC is used.

—with-gc-lib=LIB use LIB as gc lib. If the GC lib is libgc-linux.a, the LIB option is gc-linux. The path
of the library should specified witklibdir . The path of the gc.h header file should be specified with
—includedir

—without-slang do not use the slang library. By default, slang is used.

—with-slang-lib=LIB specifiesthe slang library. If the slang library is libslang-linux.a, the LIB option should
be slang-linux. The path of the library should specified withdir . The path of the gc.h header file should
be specified withincludedir . The default slang library igslang.a

—with-regex-0=FILE FILE is the regex.o package. FILE must be the full path name. The default file is
regex.o
—enable-regression enable regressions tests. The regression test will be not useful for the normal user. By

default, regressions tests are not set.

—without-preprocessor do not use any preprocessor. Lambda-flow can process the source file with a
specified preprocessor (the default preprocessor is cpp). This option disable the preprocessor usage. The default
preprocessor igpp -P %s %s -0 %s” .

—with-preprocessor_cmd=CMD preprocessor command. The command must have three %s, the first one
will be replaced with the preprocessor options, the second by the source file, the last with the target file. For
example, CMD could b&epp %s %s > %s”. Don't forget the “ that avoid the shell interpretation.”

configure also accepts and ignores some other options.

On systems that require unusual options for compilation or linking that the paclagéure script does
not know about, you can givenfigure initial values for variables by setting them in the environment. In
Bourne-compatible shells, you can do that on the command line like this:

CC='gcc -traditional’ LIBS=-Iposix ./configure
On systems that have tkeev program, you can do it like this:
env CC='gcc -traditional’ LIBS=-Iposix ./configure

Here are themake variables that you might want to override with environment variables when running
configure

For these variables, any value given in the environment overrides the valwerfigiire ~ would choose:
Variable: CC C compiler program. The defaultds .
Variable: CFLAGS The default flags used to build the program.

Variable: INSTALL Program to use to install files. The defaulinstall if you have it,cp otherwise.

42 Chapter 8. Getting, compiling and installihgmbda- f | ow

For these variables, any value given in the environment is added to the valuertfiatre chooses:
Variable: LIBS Libraries to link with, in the formlfoo -lbar...

If you need to do unusual things to compile the package, we encourage you to figure cedriigure could
check whether to do them, and mail diffs or instructions to the address given in the README so we can include
them in the next release.

8.1.2. building

Typemake to compile the package.

8.1.3. Regression tests

If the package is configured with thenable-regression option and you want to run the tests, typeake
regression

The regression test are run with the following command:

$ flow —regress Regress/*.*

And the result should be like this :

[flow/Regress>../src/flow —regress *.*
flow, 0.3 (Thu Jul 11 16:43:58 1996)-(c) Guilhem de Wailly - 1995-1996

sem-001.0 — done
sem-002.1 — done
sem-003.1 — done
sem-004.0 — done
sem-005.2 — done

without any error message.

8.1.4. Installing

Typemake install toinstall programs, data files, and documentation.

8.1.5. Cleaning

You can remove the program binaries and object files from the source directory by tygirgclean . To also

remove the Makefile(s), the header file containing system-dependent definitions (if the package uses one), and
config.status (all the files thatonfigure created), typenake realclean . If you want to clean the source

tree completely, so that it contains only those files that should be packaged in the archivealesuistclean

If you've run configure in a different directory than the source tree, distclean won't remove your *.0 and linked
programs in that directory. If you want to desinstall the program, tygle uninstall

The fileconfigure.in is used to createpnfigure by a program calledutoconf . You only need it if you want
to regenerateonfigure using a newer version @futoconf

8.2. Where to get more information on lambda-flow

You can see at the provided documentation issued in three format, postscript, man and html. Some publication
pointers are provided here.

You can send an e-mail twlw@unice.fr

You can read the WWW page at

http://alto.unice.fr: gdw/pub/lambda-flow

8.3. Notes aboutanbda- f | ow 43

8.3. Notes about anbda- f | ow

| anbda- f | owhas been run in the following configurations:
e i386-linux-linux-1.2.13

* i386-msdos-msdos-6.2

e sparc-sun-sunos-4.1

e sparc-sun-solaris-2.3

Itis a preliminary beta test version. If you have an error, please change the verbiage option to 65535 and the log file
toflow.log . Then recopile yout source file and send to us the source filéptinéog

Sincel anbda- f | owis configured via the GNWutoconf program, it's not difficult to run it in other operating
systems.

Some configure command line:

i386-linux-linux1.0 configure —enable-regression
—includedir=/ust/local/include
—libdir=/usr/local/lib
—with-gc

sparc-sun-sunos4.1 configure —enable-regression
—includedir=$HOME/usr/include
—libdir=$HOME/ustr/lib
—with-gc
—with-slang-lib=slang-sun

i386-msdos-msdos6.2 configure —with-cc=gcc-dos
—enable-regression
—includedir=c:\usn\include
—libdir=c:\usr\lib
—without-gc
—with-slang-lib=slang-dos
—with-regex-o=regex-dos.o

8.4. Porting the program

The main difficulty to port anbda- f | owis to port the GC garbage collector.

The own part off anbda- f | owis written with one GNU facility, the possibility to define some function inside a
function. This allows to share the function parameters in an easy way. To port this on some traditional c compiler, it
is needed to rewrite these inner function on the top-level, and either add to them some parameters or add some global
variable.

8.5. Obtaining the missing pieces of lambda-flow

Lambda-flow will build without requiring you to get any other software packages, however, you may be interested
in enhancing lambda-flow environment with some of these:

LAMBDA-FLOW author : Guilhem de Wailly
site . ftp://alto.unice.fr/ gdw/flow/flow-src-0.2.tgz
ftp://alto.unice.fr/ gdwi/flow/flow-bin-0.2.tgz

GC Thisimplements garbage collection of chunks of memory obtained through (its replacement of) malloc(3).
It works for C, C++, Objective-C, etc.
author : Hans J\"urgen Boehm and Mark Weiser
site . ftp://parcftp.xerox.com:/pub/gc/gc4.3.tar.gz

SLANG sl ang (pronouncedssslang) is a powerful stack based interpreter that supports a C-like syntax. It

44 Chapter 8. Getting, compiling and installihgmbda- f | ow

has been designed from the beginning to be easily embedded into a program to make it extensible. slang also
provides a way to quickly develop and debug the application embedding it in a safe and efficient manner. Since
slang resembles C, it is easy to recetlang procedures in C if the need arises.

author : John E. Davis
site . ftp://space.mit.edu/pub/davis/slang

Regex provides three groups of functions with which you can operate on regular
expressions. One group—the GNU group—is more powerful but not completely
compatible with the other two, namely the POSIX and Berkeley UNIX groups; its
interface was designed specifically for GNU. The other groups have the same
interfaces as do the regular expression functions in POSIX and Berkeley UNIX.
authors : Richard Stallman, Karl Berry,

Kathryn Hargreaves, Jim Blandy,

Joe Arceneaux, David MacKenzie,

Mike Haertel, Charles Hannum
site . ftp://prep.ai.mit

ftp://sunsite.unc.edu

And the GNU C Compiler may be obtained from the following sites:

ASIA: ftp.cs.titech.ac.jp, utsun.s.u-tokyo.ac.jp:/ftpsync/prep,
cair.kaist.ac.kr:/pub/gnu

AUSTRALIA: archie.au:/gnu (archie.oz or archie.oz.au for ACSnet)

AFRICA: ftp.sun.ac.za:/pub/gnu

MIDDLE-EAST: ftp.technion.ac.il:/pub/unsupported/gnu

EUROPE: ftp.cvut.cz:/pub/gnu, irisa.irisa.fr:/pub/gnu,
ftp.univ-lyonl.fr;pub/gnu, ftp.mcc.ac.uk,
unix.hensa.ac.uk:/pub/uunet/systems/gnu,
src.doc.ic.ac.uk:/gnu, ftp.win.tue.nl, ugle.unit.no,
ftp.denet.dk, ftp.informatik.rwth-aachen.de:/pub/gnu,
ftp.informatik.tu-muenchen.de, ftp.eunet.ch,
nic.switch.ch:/mirror/gnu, nic.funet.fi./pub/gnu, isy.liu.se,
ftp.stacken.kth.se, ftp.luth.se:/pub/unix/gnu, archive.eu.net

CANADA: ftp.cs.ubc.ca:/mirror2/gnu

USA: wuarchive.wustl.edu:/mirrors/gnu, labrea.stanford.edu,
ftp.kpc.com:/pub/mirror/gnu, ftp.cs.widener.edu, uxc.cso.uiuc.edu,
col.hp.com:/mirrors/gnu, ftp.cs.columbia.edu:/archives/gnu/prep,
gatekeeper.dec.com:/pub/GNU, ftp.uu.net:/systems/gnu

8.6. Copyright

Copyright (c) 1995, 1996 Guilhem de Wailly
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy, and
distribute this software and its documentation for any purpose, provided that the above copyright notice and the
following two paragraphs appear in all copies of this software. Permission is not granted to modify this software for
any purpose without submitting such modifications back to the author.

IN NO EVENT SHALL GUILHEM DE WAILLY BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION, EVEN IF GUILHEM DE WAILLY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

GUILHEM DE WAILLY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR APARTICULAR
PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN AS IS BASIS, AND GUILHEM DE

8.6. Copyright 45

WAILLY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

Index

actor
abstraction 9, 10
alternative 7
application 7
data 6
definition 6
extraction 9
identifier 6
instantiation 10
operator 6
output 8
program 10
stream 7
vector 8
algebra 14
checking 14
comment 14
data 6
data checking 14
initialization in target code 19
integer 18
loading 37
operator 6, 23
regular expression 14, 14
regular expression mode 14
type 14
code production 19
comment 6
criterion 11
calculability 11
closure 11
constancy 12
determinism 11
fix-point equation 11
recurrent equation 7
type checking 12
environment
definition 6
frame 8
free variable 8, 11
hierarchy 8
variable LAMBDA FLOW_PATH 37
module
compilation 37
declaration 10
definition 9
input 8
instantiation 10
link an output 9

46

output 8
parameter 9
option 17
algebra 37, 38
analysis only 37
auxiliary file 37
compile only 37
convert source file 37
default file 38
grouping expression 37
libraries files 38
license 37
linear 37
log file 37, 39
max errors 37, 38
output file 37
post-compiler options 37
preprocessor 39
preprocessor options 38
regular expression checker 38
short syntax 38
standard path 37, 38
stopping condition 38
target 38, 38
verbiage 39
regular expression
alternation operator 15
character class operator 17
grouping operator 17
interactive testing 17
interval operator 15
list operator 16
match any character operator 15
match one or more operator 15
match self operator 15
match zero of more operator 15
match zero or one operator 15
range operator 17
repetition operator 15
slang 28
lif 33
andelse 33
array 35
assignement 29
binary operators 30
boolean evaluation 31
break 35
continue 35
control flow 33

data type 31

do while 34

float 32, 32

for 34

forever 34
function 28

if 33

integer 32, 32

loop 34

orelse 33

return 35

stack operators 36
string 32

switch 34

unary operators 31
variables 28

while 33

target code 19

IO operators 23

algebra assign template 22
algebra data template 22
algebra declare template 22
algebra init template 22
algebra operators template 23
algebra sections 22
alternative template 21
ctarget 24

command template 20
comment template 21
definition file 19

exit template 21
extension template 20
file format 19

general definition 20
global initialization 19, 19
i386 target 25

identifier template 21

init section 19

init template 21

linear option 20

loop section 19, 19

next section 19

printf template 20
scheme target 25
section templates 22
slang template 20

start section 19

string template 20
templates 20

variable declarations 19
width option 21

47

