
lambda-flow - draft - version 0.3.1

Guilhem de Wailly

Institut

Preface
This document presents thelambda-flow language and its compiler. This is a functional synchronous data-flow
language.

lambda-flow can model every application that can be described with a graph and that doesnot contain any fix-point
definition. A graphical interface is proposed and it is currently rewriting with the Motif tool-kit.

The advantage oflambda-flow is its simplicity for the final user and its adaptability.lambda-flow does not
contain complicated construction, which are difficult to learn, and with a confuse semantics (or a semantics that is
difficult to understand).

The language has the minimal set of objects to model graph based application in a modular way. A module can be
separately compiled.lambda-flow encourages polymorphic module definition in order to have a maximal code
reuse.

It is a strongly typed language, but the type checking is as transparent as possible. It is not necessary to declare
everywhere the type of the handled data: the compiler uses a powerful method to deduce these types from the data.

The language is extremely adaptable to any purpose because the handled data and their operators are not specified in
the language.They form algebra that are text files dynamically loaded into the compiler.The only mandatory algebra
is the integer algebra. Of course, the user can easily write an algebra and use mixed algebra in the same program.

In an other hand,lambda-flow is adaptable because the target code is not statically specified into the compiler: the
target code definition is a text file dynamically loaded. The standard distribution issues three target code definitions
for C, Scheme and i386 assembler. The user can easily add a target code.

lambda-flow was originated to allow signal processing application to be implemented onto parallel architecture.
The underlined architecture is static because the language guarantees that all the memory accesses are known at
compile-time. This is possible becauselambda-flowprograms are deterministic in time and in resources.

The compiler is available for major Unix systems and for DOS.

The main feature of the environment are:

• functional synchronous data-flow language, formal proofs easier,

• closed to the Z-formalism,

• data algebra independent, target code independent,

• implicit type-checking, no mandatory type declaration,

• modularity and separate compilation,

• polymorphic or typed abstraction,

• time and resource determinisms,

• low-level code optimization,

• parallelism easily accessible, cheap static parallel architecture proposed,

• could be a specialized chip (ASIC) specification language.

This document could be found in an HTML web page, where the curriculum vitae of the author and the related
publications could also be obtained at the address:

http://alto.unice.fr/ gdw

Contents

1. Introduction .. 1

1.1. Existing tools .. 1

1.2. Example .. 2

2. Elements of the language .. 6

2.1. Comments .. 6

2.2. Identifiers .. 6

2.3. Data and operator .. 6

2.4. Definition .. 6

2.5. Alternative .. 7

2.6. Application .. 7

2.7. Stream .. 7

2.8. Vector .. 8

2.9. Output .. 8

2.10. Extraction .. 9

2.11. Abstraction .. 9

2.12. Abstraction declaration .. 10

2.13. Instantiation .. 10

2.14. Program .. 10

3. Semantics aspects .. 11

3.1. Closure .. 11

3.2. Calculability .. 11

3.3. Constancy .. 12

4. Algebra .. 14

4.1. General form .. 14

4.2. Regular expression .. 14

4.3. Modes .. 14

4.4. lambda-flow mode .. 15

4.4.1. The match self operator (ordinary) 15

4.4.2. The match-any-character operator (.) 15

4.4.3. Repetition Operators .. 15

4.4.4. The Alternation Operator (|) 15

4.4.5. List Operators ([...] and[...]) 16

4.4.6. Grouping Operators ((...)) 17

4.5. lambda-flow interactive regular expression tester 17

4.6. The integer algebra .. 18

5. target code .. 19

5.1. General format of the target code 19

5.2. Target code definition file .. 19

5.3. Template strings format .. 20

v

5.4. General definitions in a target code definition file 20

5.4.1. extension template .. 20

5.4.2. commandtemplate .. 20

5.4.3. linear option .. 20

5.4.4. comment template .. 21

5.4.5. width option .. 21

5.4.6. init template .. 21

5.4.7. identifier template .. 21

5.4.8. alternative template .. 21

5.4.9. exit template .. 21

5.4.10.pre-start , pre-init , pre-loop , pre-next andpost-next templates 22

5.5. Algebra dependent definitions in a target code definition file 22

5.5.1. init template .. 22

5.5.2. data template .. 22

5.5.3. declare template .. 22

5.5.4. assign template .. 22

5.5.5. Operators templates .. 23

5.5.6. Input/output operators templates 23

5.6. Samples of target code definitions 23

5.6.1. The C target code definition file 23

5.6.2. The Scheme target code definition file 24

5.6.3. The 386 assembler target code definition 25

6. The slang language .. 28

6.1. Introduction .. 28

6.2. Variables .. 28

6.3. Functions .. 28

6.4. Statements and Expressions 29

6.4.1. Assignment Statements .. 29

6.4.2. Binary Operators .. 30

6.4.3. Unary Operators .. 31

6.4.4. Data Types .. 31

6.4.5. Mixing integer and floating point arithmetic 32

6.4.6. Conditional and Branching Statements 33

6.4.7. Arrays .. 35

6.4.8. Stack Operators .. 36

7. Using the compiler .. 37

7.1. Compiler command line options 37

7.2. Initialization file .. 38

7.3. Compile a single file program 39

7.4. Invoking the preprocessor .. 39

7.5. Compile a multi-files program 39

8. Getting, compiling and installing lambda-flow 40

8.1. Installation instructions for lambda-flow 40

8.1.1. Configuring .. 40

8.1.2. building .. 42

vi

8.1.3. Regression tests .. 42

8.1.4. Installing .. 42

8.1.5. Cleaning .. 42

8.2. Where to get more information on lambda-flow 42

8.3. Notes aboutlambda-flow 43

8.4. Porting the program .. 43

8.5. Obtaining the missing pieces of lambda-flow 43

8.6. Copyright .. 44

vii

viii

Chapter 1. Introduction

lambda-flow is a general purposefunctional synchronous data-flow language. It is general because the language
does not specify the handled data and their operator (4).These definitions aredynamically loadedinto the compiler,
at compile-time (7). In addition, the target code is also defined dynamically at compile-time (5).

The language isfully functional . The word fully is important: the language is of course functional in the traditional
meaning, where an expression has not side effect. But in addition, the whole solving process is described in a
functional form. This strong feature emphasizes the semantics definition of the language. Making proofs is easier.

The data-flow property is thefunctional translation of the state variablesin a program.lambda-flow belongs
to the Lucid family. It was been shown that iterations in a program can be translated by stream definitions, with the
advantage of the functional property.Butlambda-flow is wanted to be deterministic in time and in resource.Some
constraints have been added to the language, which provides the synchronous feature.

Due to thedeterminismsof the programs, their could be implemented ontostatic parallel architecture. All the
memory accesses are known at compile time, so they can be resolved at this moment.

1.1. Existing tools

A dataflow program is a diagram with lines as data paths and boxes as operations. It exists two methods to run a
dataflow program.

The first method to run a dataflow programs is thedata-driven method. When a data is available on each input of
an operator, the operator computesa new data that it puts on its output.The researcheson dataflow parallel computers
started withMiller andKarp in 1966. But this kind of dataflow suffers to the lack of a global semantic description
of the program and the inefficiency of the implementations.

The second method to run a dataflow program is thedemand-drivenmethod. Here, a result is asked to an operator.
The operator propagates the demand to its empty inputs.When all the inputs data are available, the operator computes
a data and it returns it. This kind of dataflow is closed to the functional programming style.

Functional languageshave all a valuable property: they are built on the mathematically based lambda-calculus.
Functional programming languages can be efficiently implemented onto a classicalVon Neumann architecture,
which provides low cost specialized DSP processors and well known programming environments.

The first functional dataflow language isLucid . It is the first to demonstrate that a dataflow programming style can
replace iteration,with the advantage of the functional property.ButLucid contains several features not well adapted
to DSP. Particularly, it is nottimememory deterministic/.

TheSisalis introduced to implement general purpose FSD program onto parallel architecture. But it is not adapted
for DSP for the same reasons thanLucid.

Lustre andSignalare two FSDlanguageswell adapted for DSP.Their kernel isbased on recurrent clocked equations.
Signaldoes not define explicitly a root clock while the clocks inLustre are all defined on a base clock.

Our languagelambda-flow is a part of a CAD tool chain for implementing DSP application onto parallel
architectures. It is more primitive than the languages cited above. It has less expressions and less concepts: it defines
only one temporal operator, used to built a stream of values. The streams are updated in a synchronous way, so, the
language could be used forreal-time applications.

It provides thealternative construction (if-then-else).Associated to the stream object, the alternativescould be used
to define some clocks. So, the clock concept is not explicitly defined in the core language.

The integeralgebra is predefined by default. All the other handled data are dynamically bound to an algebra. This
feature gives to the language a great generality and adaptability: it is defined as a “thing to handle some things”,
without specifying the nature of the handled things, such as theLandin ’s language.

lambda-flow is a typed language, but its type checking has less constrains than the languages cited above: it
encouragespolymorphic abstractions. In addition, it supports a full lexical scope binding.lambda-flow has a

1

2 Chapter 1. Introduction

graphical interface where the program can be drawn as a dataflow graph.

1.2. Example

In this section, we use thelambda-flow language to specify a digital filter. The diagram of the filter is given in the
following figure.

k 1 k 2

c 2
c 1

c 0

- -+

+
+

+

+
+

+
+ +

+

Z-1 Z-1
b

a c

e
d

i

o

This is a recursive second order filter. It is very easy to program this filter withlambda-flow: give a name to each
node, replace theZ operator by a stream, and you get the program:

filter := lambda i. begin

o ! a + b + c + d;

a := i - b;

b := 0 followed-by d;

c := a - e;

d := c + e;

e := 0 followed-by c;

end;

Notice the great similarity between this specification and the Z-equations1.

In order to simulate a multiple files program, let us define amain module which instantiatesfilter . We obtain:

main := lambda i:int. begin

out ! filter(i) extract o;

end;

As in the language C, a program must have one and only onemain module. Its inputs must be typed. In addition, the
outputs of the whole program is the outputs of themain module.

Now, this program has to be compiled with thelambda-flowcompiler.lambda-flow accepts several options in
the command line (7.1),and it has also a configuration file (7.2).Some options are loaded by default.So, the compiler
invocation is simply:

$ flow filter.lf main.lf

This command produce an executable filea.out . If you want to keep the C auxiliary file, simply type:

$ flow -k filter.lf main.lf

that produces in addition the followinga.c file:

#include <stdio.h>

int getint(int port) {

int tmp;

if (scanf ("%d", &tmp) == EOF) exit(0);

return tmp;

}

#define putint(port,value) printf("%d ", value)

1The Z-formalism is a mathematics tool used to study the DSP filter.

1.2. Example 3

static int d;

static int e;

static int i;

static int out_1;

static int a;

static int b;

static int c;

main() {

start:

init:

i = getint (1);

b = 0;

e = 0;

loop:

a = (i) - (b);

c = (a) - (e);

d = (c) + (e);

out_1 = putint (1, (a) + ((b) + ((c) + (d))));

next:

i = getint (1);

b = d;

e = c;

goto loop;

}

Thelambda-flow compiler could also produce Scheme code. Simply type:

$ flow -t scheme -k filter.lf main.lf

That produces aa.scm output file:

(define (getint port) (read))

(define (putint port value) (display value))

(define (bool->int bool) (if bool 1 0))

(define (int->bool int) (if (zero? int) #f #t))

(let* (

)

(let loop (

(i (getint 1))

(b 0)

(e 0)

)

(let* (

(a (- i b))

(c (- a e))

(d (+ c e))

(out_1 (putint 1 (+ a (+ b (+ c d)))))

)

(loop

(i (getint 1))

(b d)

4 Chapter 1. Introduction

(e c)

))))

Notice that the Scheme code does not contain anyset! .

The last command produce Intel 386 code:

$ flow -t i386 -k filter.lf main.lf

That produces aa.s output file:

.data

d .word

e .word

i .word

out_1_1 .word

out_1_2 .word

out_1_3 .word

out_1 .word

a .word

b .word

c .word

.text

main:

init:

in 1

mov.w i, ax

mov.w b, 0

mov.w e, 0

loop:

sub.w i, b

mov.w a, ax

sub.w a, e

mov.w c, ax

add.w c, e

mov.w d, ax

add.w c, d

mov.w out_1_1, ax

add.w b, out_1_1

mov.w out_1_2, ax

add.w a, out_1_2

mov.w out_1_3, ax

mov.w ax, out_1_3

out 1

mov.w out_1, ax

next:

in 1

mov.w i, ax

mov.w b, d

mov.w e, c

jmp loop

end:

The power oflambda-flow is demonstrated with the code production os three very differents languages: C as

1.2. Example 5

imperative language, Scheme as functional language and i386 assembler.

In fact, the target code is defined in a target code definition file that is a text file dynamically loaded into the compiler.
The user could extent the standard target definition file very easily.

Chapter 2. Elements of the language

2.1. Comments

lambda-flow uses theC++ comment forms. A comment start from// to the end of the line. A comment could
also start from/* to */ , which allows multi-lines comments.

2.2. Identifiers

All the string of characterswithout blanks and special charactersare identifiers.A blank is one or more mixed spaces,
tab or newline. Special characters are[]() ?:\.;,! ; they are used as keywords in the language. for example:

toto fooéé #er 123

are four identifiers.Notice that123 is not recognized as an integer, as in the traditional language, but as an identifier,
as explained in the next section.

2.3. Data and operator

lambda-flow does not specify the data and their associated operators.These specificationsare written in an algebra
file, dynamically loaded in the compiler (4). Such an algebra defines an regular expression (4.2) to identify an
identifier as its own data.lambda-flow supports several regular expressions modes (4.3. By default, it uses the
mode used by the lexical parserlex . The regular expression used to identifier the integers is:

check = flow: "[+-]?[0-9]+"

This definition is a part an an algebra file. The way to build a new algebra is explained later, when the real algebra
is defined (ref id=algebra t=X//).

lambda-flow defines by default the integer algebra,because it needs the integer.The type associated to this algebra
is int . This algebra is described in a fileinteger.alg (4.6).

An operator inlambda-flow is also defined in the algebra file. It has a name, a signature and a comment. For
example, the line that defines the addition integer operator in the integer algebra file is:

+ = int->int->int, integer addition

where+ is the operator name,int->int->int the signature andinteger addition the comment.The signature
is given in the denotational form where the right-most type is the type of the value returned by the operator, and the
others types are the type of the arguments.

Of course,lambda-flow can deals with operator with identical name. For example, thereal addition operator
could be defined as:

+ = real->real->real, real addition

When the+ operator is encountered,lambda-flow checks the signature of the arguments, and chooses the good
operator.lambda-flow does not defined a type-tower as in the other language. Such a mechanism could convert
an integer into a real if it is added to a real.

2.4. Definition

A definition allows to associate a name to a value. Notice we use the verb associate and not assign:lambda-flow

is a language with equations, not an imperative one. Everywhere in the current environment, the name becomes
a synonym of the associated value. The environment mechanism is explained later. For example:

baz is foo;

6

2.4. Definition 7

foo is 3;

defines two identifiersbaz andfoo . baz is associated to the valuefoo andfoo is associated to the value3.

Notice that the order of the definitions is not important:here,foo is definedafterbaz uses it. But inlambda-flow,
the wordafter has no meaning.

The value of a definition could be whatever alambda-flowexpression.The name must be an identifier. In addition,
a definition cannot occurs inside another expression such asfoo := baz := 3 . A definition is named a root
object.

In lambda-flow, an expression must be ended with the character; , such as in the most popular languages.

If an identifier is defined twice, only the first definition is considered.

lambda-flow supports two syntax levels:a long-syntax mode and a short-syntax mode.The long mode usesexplicit
keyword, such asis while the short mode uses symbols. The symbol associated tois is := . The example given
above become:

baz := foo;

foo := 3;

2.5. Alternative

An alternative isa choicebetween twoexpressionscalled thethen-clauseand theelse-clauseaccording toacondition.
Here, it is important to forget the notion of side effect,becauselambda-flow hasno side effect.So, it isnot important
to know if theconditionis evaluated before thethen-clause, or if only one of thethen-clauseor theelse-clauseis
evaluated. For example:

if x then 1 else 2;

is an alternative. Its value depends on the value of the identifierx . The condition, and the two clauses could be
whatever a non-rootlambda-flow expression. The condition must have the integer signature:0 plays the role of
false and the other integers play the role oftrue .

The other syntax used for alternatives is:

x ? 1 : 2;

The alternative object allows to build multi-rate programs.

2.6. Application

An application applies some arguments to an operator. For example:

+ (1, 2);

is the application of the operator+ to the argument1 and2. In order to choose the good operator,lambda-flow

first checks the signature of the arguments. In this expression, they are integer with the signatureint . Then, it can
choose among the loaded algebra an operator with the name+ and with two integer arguments.

When an application has two arguments, it can be written in a more traditional way, such as:

1 + 2;

In this written, the two blanks between the operator are mandatory. Without any blank,lambda-flow understand
the identifier1+2 .

2.7. Stream

The stream allows the time to be handled in a program. It is a functional view of a state variable.

In imperative languages,the main elements is the storagecellsand the way toaccessthem.Generally,a cell iseccessed
with the given name of the variable. A cell has a type, and only a value with the same type can be assigned.

With these two accessesmode, the imperative language naturally define the sequence,generally known as the control
flow of the program.For an assignment instruction into a cell, there are two worlds: the world before the assignment,
and the world after. The main problem with the assignment mechanism is the impossibility to know the state of a

8 Chapter 2. Elements of the language

big program at an instant, due to explosion of the state number.

The stream of data-flow languages is the functional expression of a state variable: it defines its initial value, and
the way to compute all the next values. So it is possible to know the state of a program at each instant of its life. The
gain is that a data-flow program supports formal proofs.

In lambda-flow, the stream expression is particularly simple:a stream is composed with an initial value named the
state, and the expression of all the next values, named thecontract. For example:

0 followed-by 1;

defines the stream of the integer0 followed by the integer1. The authors of the language Lucid use the following
syntax to deal with such a stream: they write{0, 1, 1, ...} . If the expressionx is the stream{1,2,3,..} , the
streamy defined as:

y := 0 followed-by x + 1;

is evaluated as{0, 1, 2, 3, ...} . The streamx could be defined with the expression:

x := 1 followed-by x + 1;

Streams can also be written with the short syntax, such as:

x := 1 x + 1;

2.8. Vector

A vector gatherssome expression together in a same object.A vector startswith the keywordbegin and endswith the
wordend . All the expressions it contains must be separated with a; (the last; could be omitted). For example:

begin

1;

f := 2;

x := f + 1;

end;

is a vector. A vector plays the role of an environment frame: all the definition (2.4) it contains are visible in all
the expressions it contains, even if they are vectors. Because a vector can contain a vector, a nested-environment
mechanism is defined. In the vector above, the defined identifiersf andx are visible in all the expression the vector
contains. In the following example:

begin

a := 1;

b := begin

a := 2;

c := 3;

d := a + c;

end;

end;

the evaluation ofd is 5. The identifiera is named a free variable of the vectorb/. In this way, the free variables of
a vector could be view as the inputs of a module. The vector object is the primitive tool for modularizing programs.
This tool is greatly improved by the abstraction object.

Notice that the expression contained in a vector can be root expression, such the definition.

The other syntax for the vector is:

[

f := 2;

x := f + 1;

];

2.9. Output

An output is a root expression. It is used to explicitly export an expression outside of a vector. It is written:

2.9. Output 9

foo output 1 + 3;

that exports the identifierfoo outside of the vector that contains it. Of course, the variable of the the exported
expression is bound in the environment where it is written. Notice this expression is not a definition: the identifier
foo is not defined in the vector that contains it.

The other output syntax is:

foo ! 1 + 3;

2.10. Extraction

The extraction object is the counterpart of the output object: it can read an exported expression inside a vector. It is
composed with an indexed expression and an index expressions, and it is written:

s := begin x!1; y!2; z!3; end;

t := s extract y;

Notice thatlambda-flow does not attempt to bind the index identifier to the current environment: it tries to find a
corresponding output in the indexed vector.

If there are two outputs with the same identifier in the indexed expression, only the first one is considered.

In this first version oflambda-flow, the indexed expression must be either a vector, or an identifier that refers to
a vector or the instantiation (see below) of a vector.

lambda-flow supports numerical extraction where the index expression is an integer. The integer index is the
numerical 1-based position of the indexed expression. In order to keep the functional property of the language, the
first component of the indexed expression is returned if the index value does is not a valid index.

So, it is possible to write:

table := [123; 432; 234; 556;];

coef := table extract x + 1;

In this case,lambda-flow generates the code:

The other syntax for the extraction is:

table := [123; 432; 234; 556;];

coef := if (x + 1) = 1 then table extract 1

else if (x + 1) = 2 then table extract 2

else if (x + 1) = 3 then table extract 3

else if (x + 1) = 4 then table extract 4

else table extract 1;

As it can been see, if the index has not the good value, the default result is the first component of the table.

The short extraction syntax is:

coef := table . x + 1;

2.11. Abstraction

The abstraction object allows useful modularization of the applications. In order to keep the determinisms of the
applications, the abstraction constructs are severely limited: they are not as powerful as in the lambda-calculus.
Particularly, it is impossible to write theY combinator, and all recursive construction. An abstraction is closest than
the macro definition, such as in the C language. It is written:

lambda a, b, c. expr

where the identifiera, b andc are the parameters of the abstraction, and theexpr the abstracted expression.

If expr hasa, b or c as free variable, they are bound to the parameters that take their values where the abstraction
is instantiated (2.13).

Notice the parameters could be typed or not. To add a type to a parameter, simply type:

lambda a:type1, b:type2, c:type3. expr

wheretypes are the type namesof loaded algebra.For example,int isa valid type name.Mixing typed and untyped

10 Chapter 2. Elements of the language

parameters is allowed.

The use of untypeded parameter encourages polymorphic definitions. For example, the following expression is
defined whatever the type of the given arguments, if there is the operator* could be found in a loaded albegra.

sqr := lambda a. a * a;

The short syntax for an abstraction is:

\ a, b, c. expr

2.12. Abstraction declaration

Becauselambda-flow allows the separate compilation of the source files, it is needed to declare the abstractions
used in a file, without define them.

This is achieve with the writing :

lambda a, b, c

without any body. Generally, this object is used with a definition.

2.13. Instantiation

The instantiation syntax is identical than the application syntax. Thesqr abstraction defined above is instantiated
with the writing:

foo := sqr (3);

The underlined mechanism of the instantiation is closest to the macro-replacement than a function call. In fact, the
body of the abstraction is put in place of the instantiation. Of course, this seems very simple. Butlambda-flow

keeps the static lexical binding, and this point is the main difficulty: the free variables of an abstraction are linked
in the environmentwhere the abstraction is defined instead of the environment where the abstraction is used. This
kind of binding is very useful and currently used in almost the modern functional language.

2.14. Program

A lambda-flow program is a set of expressions which can be fit in several files.Among all these expressions, there
is one module named themain module. It is a definition withmain as identifier that defines an abstraction with or
without parameters.

If they are, the parametersmust be have a type: they play the role of the inputs of the program.

The body of the abstraction must be a vector. It could contain several outputs: in this case, they are the outputs of the
application.

One of these outputs could play the role of the stopping condition: the program stops when the value of this output
is reach a non-zero value. The stopping condition is specified as an option of the compiler command line (7.1).

Chapter 3. Semantics aspects

The compiler performsa strong verification of the programsbefore produces the target code.This verification checks
if all the used identifiers are defined, if there is no-recursive cycles and then, it performs a type checking.

3.1. Closure

The closure deals with the variable definitions.An expression is closed if all the used identifiers are defined.Because
lambda-flow allows a separate compilation, it is not an error if an identifier is not defined, but in this case, the
code production is avoided.

lambda-flow has a static lexical scope strategy for the identifier. This way is more clearest for the final user than
the dynamic lexical scope. Let us take this example:

a := 3;

f := lambda x. x + a;

begin

a := 4;

f (3);

end;

In this toy example, the free identifiera of f is linked to the topmost definition ofa, and not to thea inside the vector:
the identifiers are linked in thedefinition placeinstead of theuse place. This rule is very natural for the final user,
but it severely complicated the compiler.

lambda-flow allows the separate compilation of the programs.The separate compilation produce alambda-flow

program where all the known identifiers were bound to their value.

3.2. Calculability

The calculability deals with the cycle-detection in a program. The time determinism constraint imposes to forbid
such cycles. There are two kind of cycle inlambda-flow: the fix-point equations, and the recurrent ones.

A fix-point occurs when an identifier needs the value it has to be evaluated. For example:

x := x + 1;

defines a fix-point equation onx . Some fix-point equations have a solution, and some have no solution. But they are
all evaluated in an indeterministic duration. In a program, cycle are sometime as direct as in the example above, but
sometime, they are difficult to find. In order to keep the time determinism of the programs,lambda-flow rejects
programs that contain fix-point equations.

A recurrent equation has the same form than a fix-point equation, but the identifier is considered at two different
instants. For example:

x := 0 followed-by x + 1;

defined the stream of the natural integer, which can be written{0, 1, 2, ...} . The twox are considered at
two different instants. This construction is the functional representation of a variable in imperative languages. The
difference is that the evolution of the variable is perfectly known with a stream definition.

Butlambda-flow has to check cycle in the stream contract itself.For example, the contract of the following stream
cannot be evaluated:

x := [0; 0] followed-by [a:=a + 1; 2];

because the definition ofa creates a fix-point equation.

lambda-flow uses a complex algorithm to find the cycles. For example, the following graph:

11

12 Chapter 3. Semantics aspects

module x

y

i

ob

a o’

does not contains any cycle. It could be implemented with:

module := lambda a, b. begin

x ! a;

y ! b;

end;

instance := module (i, o’);

o’ := instance . x;

o := instance . y;

whereinstance is the instance ofmodule . It is clear that the definition ofo seems to create a cycle. The analysis
of such instantiation is complex.

3.3. Constancy

The constancy dealswith the type-checking.lambda-flow has a type strategy very natural for the final user:explicit
type declarations can be entirely avoided for a program, except for the main inputs. The main inputs must be signed
asmain := lambda in1 : type1, in2 : type2,

The signatures1 of the expressions are deduced from the type of the data, and when they exist, the type of the
parameter.A data has only one type:lambda-flow does not implements the types tower,as in some other languages:
the user has to convert explicitly the data on need.

The construction of the language allows the compiler to be always able to deduce the signature of the expressions.
This encourage the polymorphic definitions. For example, the following abstraction:

sum := lambda init, unit. [

state := init followed-by state + unit;

out ! state;

];

is type independent. For example,sum could be instantiated with:

integers := sum(0, 1) . out;

or with:

complexes := sum(0+i0, 1+i0);

wherea+ib is recognized by the complex algebra2. In these two instantiations, the+ operator is not the same: in
the first instantiation, it is the integer addition operator while in the second instantiation, it is the complex addition
operator. Thesum abstraction is polymorphic because it could be used with all the algebra that define the+

operator.

If the sum abstraction is wanted to be defined only for the complex, its definition could be replaced with:

sum := lambda init:complex, unit:complex. [

state := init followed-by state + unit;

out ! state;

];

1the wordtypeis prefered for the date, and the wordsignatureis prefered for the other expressions.
2Notice that 0+i0 is not recognized as0 followed by+, i and0, but as an alone string recognized by the complex algebra

3.3. Constancy 13

With this new definition, the instantiationsum(0, 1) produces a compiler error because the given arguments have
not the good type.

The polymorph feature is very useful for the designer that conceives general programs.

Chapter 4. Algebra

An algebra is composed by a data-type and some operators. The data-type is materialized with a regular expression
(4.2) that recognizes or not the given string. The operators are composed with a name, a signature and a comment.

The number of algebra is not limited, and an algebra could use the type of other algebra.

In this section, we will discuss about the default integer algebra file which could be found in the distribution.

4.1. General form

The text file that describes an algebra has this form:

[type]

name = int

comment = Basic algebra for integer arithmetic

check = flow: "[+-]?[0-9]+"

[operators]

+/- = int->int, change sign

+ = int->int->int, addition

...
where,int is the type name. Thecheck field is discussed above. The number of the operator is not limited. The
signature of the operator could use type of other algebra.For example, it is possible to add an integer to real converter
operator with:

[operators]

...

int2real = int->real, integer to real convert

...

The operator name is not reserved. For example, thereal algebra also defines the addition operator with:

+ = real->real->real, addition

The integer addition and the real addition are distinguished with the type of their arguments.

It is important to notice that the algebra do not specify the meaning of the operator, but only the way to know
them.

The more important part of an algebra definition is the regular expression, explained in the next section.

4.2. Regular expression

lambda-flow uses regular expressions loaded from an algebra file to recognizes the data. A kind of regular
expression is the operating systems shells that replace the* character with all the files of the current directory.

More generally,a regular expression is a text string that describessome set of strings.A regular expressionr matches
a strings if s is in the set of strings described byr .

4.3. Modes

Thelambda-flow regular implementation is based on theregex package ofKarthryn A. Hargreaves andKarl
Berry (ftp: /prep.ai.mit/).

lambda-flow allows several regular expression mode.The mode is the first world. In the integer regular expression,
the mode isflow .
The mode could be either:awk, grep , egrep , ed, sed , posix-awk , posix_egrep , posix_basic ,
posix-minimal , posix-extended , posix-minimal-extended or flow .

14

4.3. Modes 15

All the mode namescorrespond toprogramsof the UNIX system.The simplest mode isflow that implementsregular
expressions closest to the lexical parserlex .

4.4. lambda-flow mode

Thelambda-flow regular expression mode is closest to the lexical parserlex . A regular expression is a string
where each character is an operator.

4.4.1. The match self operator (ordinary)

This operator matches the character itself. All ordinary characters represent this operator. For example,f is always
an ordinary character, so the regular expressionf matches only the stringf . In particular, it does not match the string
ff .

4.4.2. The match-any-character operator (.)

This operator concatenates two regular expressionsa andb. No character represents this operator; you simply put
b aftera. The result is a regular expression that will match a string ifa matches its first part andb matches the rest.
For example,xy (two match-self operators) matchesxy .

4.4.3. Repetition Operators

Repetition operators repeat the preceding regular expression a specified number of times.

4.4.3.1 The Match-zero-or-more Operator (*)

This operator repeats the smallest possible preceding regular expression as many times as necessary (including zero)
to match the pattern.* represents this operator. For example,o* matches any string made up of zero or moreos.
Since this operator operates on the smallest preceding regular expression,fo* has a repeatingo, not a repeatingfo .
So,fo* matchesf , fo , foo , and so on.

4.4.3.2 The Match-one-or-more Operator (+)

This operator is similar to the match-zero-or-more operator except that it repeats the preceding regular expression
at least once for what it operates on, how some syntax bits affect it.

For example,ca+r matches, e.g.,car andcaaaar , but notcr .

4.4.3.3 The Match-zero-or-one Operator (?)

This operator is similar to the match-zero-or-more operator except that it repeats the preceding regular expression
once or not at all to see what it operates on, how some syntax bits affect it.

For example,ca?r matches bothcar andcr , but nothing else.

4.4.3.4 Interval Operators ({...})

• {count} matches exactlycount occurrences of the preceding regular expression ;

• {min,} matchesmin or more occurrences of the preceding regular expression ;

• {min, max} matches at leastmin but no more thanmax occurrences of the preceding regular expression.

The interval expression (but not necessarily the regular expression that contains it) is invalid if eithermin is greater
thanmax, or any ofcount , min , or max are outside the range zero to65535 .

4.4.4. The Alternation Operator (|)

Alternatives match one of a choice of regular expressions: if you put the character(s) representing the alternation
operator between any two regular expressionsa andb, the result matches the union of the strings thata andb match.
For example,foo|bar|quux would match any offoo , bar or quux .

16 Chapter 4. Algebra

The alternation operator operates on thelargestpossible surrounding regular expressions. (Put another way, it has
the lowest precedence of any regular expression operator). Thus, the only way you can delimit its arguments is to
use grouping. For example, if(and) are the open and close-group operators, thenfo(o|b)ar would match either
fooar or fobar . (foo|bar would matchfoo or bar .)

The matcher usually tries all combinations of alternatives so as to match the longest possible string. For example,
when matching(fooq|foo)*(qbarquux|bar) againstfooqbarquux , it cannot take,say, the first (“depth-first”)
combination it could match, since then it would be content to match justfooqbar .

4.4.5. List Operators ([...] and [...])

Lists, also calledbracket expressions, are a set of one or more items. Anitem is a character, a character class
expression, or a range expression. The syntax bits affect which kinds of items you can put in a list. We explain the
last two items in subsections below. Empty lists are invalid.

A matching listmatchesa single character represented by one of the list items.You form a matching list by enclosing
one or more items within anopen-matching-list operator(represented by[) and aclose-list operator(represented
by]).

For example,[ab] matches eithera or b. [ad]* matches the empty string and any string composed of justa and
d in any order. A regular expression with a[but no matching] is considered as invalid.

Non-matching listsare similar to matching lists except that they match a single characternot represented by one
of the list items. You use anopen-nonmatching-list operator(represented by[1) instead of an open-matching-list
operator to start a nonmatching list.

1The is not considered to be the first character in the list. If you put a character first in (what you think is) a matching list, you’ll turn it into a
nonmatching list.

4.4. lambda-flow mode 17

For example,[ab] matches any character excepta or b.

Most characters lose any special meaning inside a list. The special characters inside a list follow.

•] ends the list if it’s not the first list item. So, if you want to make the] character a list item, you must put it
first ;

• [: represents the open-character-class operator if what follows is a valid character class expression ;

• :] represents the close-character-classoperator if what precedes it is an open-character-classoperator followed
by a valid character class name ;

• - represents the range operator if it’s not first or last in a list or the ending point of a range.

All other characters are ordinary. For example,[.*] matches. and* .

4.4.5.1 Character Class Operators ([: ...:])

A character class expressionmatches one character from a given class. You form a character class expression
by putting a character class name between anopen-character-class operator(represented by[:) and a
close-character-class operator(represented by:]). The character class names and their meanings are:

• alnum letters and digits

• alpha letters

• digit digits

• lower lowercase letters

• punct neither control nor alphanumeric characters

• upper uppercase letters

• xdigit hexadecimal digits:0–9, a–f , A–F

These correspond to the definitions in the C library’sctype.h facility.For example,[:alpha:] corresponds to the
standard facilityisalpha . character class expressionsare recognized only inside of lists;so[[:alpha:]] matches
any letter, but[:alpha:] outside of a bracket expression and not followed by a repetition operator matches just
itself.

4.4.5.2 The Range Operator (-)

Range expressionsrepresent those characters that fall between two elements in the current collating sequence. You
form a range expression by putting arange operatorbetween two characters1. - represents the range operator. For
example,a-f within a list represents all the characters froma throughf inclusively.

4.4.6. Grouping Operators ((...))

A group, also known as asubexpression, consists of anopen-group operator, any number of other operators, and
a close-group operator. This sequence is treated as a unit, just as mathematics and programming languages treat a
parenthesized expression as a unit.

Therefore, usinggroups, you can:

• delimit the argument(s) to an alternation operator or a repetition operator ;

• keep track of the indices of the substring that matched a given group.This lets you either use the back-reference
operator or use registers.

4.5. lambda-flow interactive regular expression tester

Thelambda-flow compiler offers a reasonable interactive tool to test the regular expressions. Simply type in the
command line:

$ flow –regExCheck

1You can’t use a character class for the starting or ending point of a range, since a character class is not a single character.

18 Chapter 4. Algebra

The compiler enters in an interactive mode and waits on a prompt. There are three levels, where you can chose the
mode, enter the regular expression and test some strings. To leave a level in order to go in the upper level, simply
typeENTER(typingENTERin the mode selection level leaves the compiler).

The mode selection level let you chose the regular expression mode among the one cited above. On the prompt, type
the selected mode. For example, typeflow .

Then you are in the regular expression selection level. Here, you can either return to the mode selection level with
ENTERor enter a regular expression.For example,enter the regular expression of the integer algebra,[+-]?[0-9]+ ,
and then, pressENTER.

Then, you are in the string test level where you can test some string. Here, you can return to the upper level with
ENTERor test a string. For example, type123 . The compiler displaysmatch because the entered string matches to
the entered regular expression. Now, typetoto and the compiler respondsno match .

Press the keyENTERthree times to return to the operating system.

4.6. The integer algebra

Here, we show the complete integer algebra provided withlambda-flow:

[type]

name = int

comment = Basic algebra for integer arithmetic

check = flow: "[+-]?[0-9]+"

[operators]

+/- = int->int, change sign

+ = int->int->int, add

- = int->int->int, subtract

* = int->int->int, multiply

/ = int->int->int, divide

% = int->int->int, modulo

= = int->int->int, equality

> = int->int->int, greater

< = int->int->int, smaller

>= = int->int->int, greaterEq

<= = int->int->int, smallerEq

<> = int->int->int, different

<< = int->int->int, shift left

>> = int->int->int, shift left

& = int->int->int, shift right

| = int->int->int, shift right

&& = int->int->int, shift right

|| = int->int->int, shift right

zero = int->int, is zero

Chapter 5. target code

lambda-flow is independent with the target code that is defined in a file calledtarget code definition. Therefore,
the produced code has always the same structure, as shown in the next section.

5.1. General format of the target code

The lambda-flow produced code has always the same structure. This structure is independent with the real
produced code, specified in thetarget code definition file.

general initialization

algebra initializations

variable declarations

start section

init section

loop section

next section

The code has an initialization phase, a temporary variable evaluation and a stream regeneration phase. Then it does
a loop.

general initialization: initialization of the whole program.Here,some files could included,or some global variables
initialized ;

algebra initialization: each used algebra could initialize itself here.An algebra could initializesa variable or defines
some things ;

variables declarations:all the inputs, the stream states and the temporary variables are declared here;

start section:this section of code compute all the necessary values for stream initialization. Notice that the stream
states are not initialized here;

init section: the inputs and the stream states are initialized here, possibly with the values computed in thestart

section ;

loop section:the loop section compute all the temporary variables used to compute the outputs of the program and
the next stream state values;

next section:the new values of the stream state are assigned here, as the new values of the inputs;

loop: this section contains the code to jump to theinit section .

5.2. Target code definition file

A target code definition file(TCDF) is a text file that implement the operators of the algebra in a specific target code.
It is organized with two main parts: a general definition part and an algebra implementations part.

The TCDF is based on template strings. A template string is a string where some value could placed. A well

19

20 Chapter 5. target code

know template string form is the Cprintf() function format string, where the%xtemplates are replaced with the
corresponding values.

Each template in a TCDF has a name and a template string value. For example, a template could be:

command = "gcc %s %s -o %s"

that defines thecommand template as the string“gcc %s -o %s” . The TCDF supports several template string
formats, as explained in the next section.

5.3. Template strings format

A template string is the value of a template. The TCDF has three template string format:

simple string :thevalueof the template is thegiven stringwithout any replacement.The string iswrittenas is,
without any syntactic marker, astemplate = the value . This string could be empty if a value is optional;

“printf()” format : the value of the template is a string where some%sappear. The whole string is written
into “” . The number of%s is determined by the considered template. For example, thecommandtemplate has
three values: the command options, the command input file and the command output file, given to the template
string in this order. Using this format allows\n replacement in the string;

slang() format : theslang template string format has the following form:slang (parameters) {slang

function body} whereparameters are the name of the parameters, andbody theslang function body.
Thecommandtemplate string could be replaced withslang (opt, in, out) {return Sprintf (“gcc

%s %s -o”, opt, in, out, 3);} . Theslang language is explained in a next section (6).

5.4. General definitions in a target code definition file

The general definitions in a TCDF are grouped under the section[target] . Under this section there are several
template and several options, as explained above.

5.4.1. extension template

This template is the extension of the file generated by thelambda-flow compiler when the user want to keep the
auxiliary file. This template has no argument.

Theextension template of the C-TCDF is:

extension = c

5.4.2. commandtemplate

Thecommand template is the post-compiler to run afterlambda-flow has produced the auxiliary file. Generally,
it is either a compiler or an interpreter.

This template has three arguments, the command options, the input file which is the auxiliary file name and the output
file name specified by the user.

Thecommandtemplate of the C-TCDF is:

command = "gcc %s %s -o %s"

5.4.3. linear option

The linear option is either yes or no. It is not a template, but an option. When it is set toyes ,
lambda-flowproduces a linear code.

Thelinear template of the C-TCDF is:

linear = yes

With the C language, this option could beno because the C language supports recursive expression construction.

5.4. General definitions in a target code definition file 21

5.4.4. comment template

The comment template is the line-comment form of the target language. It has one argument, the string to be
commented in the auxiliary file.

Thecomment template of the C-TCDF is:

comment = "/* %s */"

5.4.5. width option

Thewidth option indicate the indentation used bylambda-flow in the auxiliary file to put its comments.

Theextension template of the C-TCDF is:

width = 50

5.4.6. init template

Theinit template is a text to put on the top of the auxiliary file. It has no argument. It could be used to declare and
initialize someslang variables.

Theinit template of the C-TCDF is:

init ="\

/*C TARGET CODE*/\

#include <stdio.h>\n"

This definition shows that the template string could be written in more than one line, with the escape character\ at
the end of the inner lines.

This template has theprintf() format to allow the character\n to be replaced with a newline in the output file.

5.4.7. identifier template

Theidentifier templatehasone argument,an identifier name.It isused to allows the identifier name to be conform
to the target language.lambda-flow generates identifier that contains numeric value and underscore character.

This template could be used to replace these characters if the target language does not support them in the identifier
name.

Theextension template of the C TCDF is:

identifier = "%s"

5.4.8. alternative template

Thealternative template is the translation in the target language of the alternative. It has three argument, the
condition which isan integer where 0 denotes the false value and the other valuesdenote the true ones, the then-clause
and the else-clause.

If the linear option is not set, the argument could be complex expression. If it is set, the argument are either simple
data or identifier.

Thealternative template of the C TCDF is:

alternative = (%s) ? (%s) : (%s)

5.4.9. exit template

Theexit template is used to check if the stopping condition is reached. It has one argument, the stopping condition.
Generally, this template call theexit command of the target language.

Theexit template of the C TCDF is:

exit = "if (%s) exit(0);"

22 Chapter 5. target code

5.4.10. pre-start , pre-init , pre-loop , pre-next and post-next templates

These templates are placed on the top of the corresponding sections, exceptpost-next placed on the bottom of
thenext section (5.1).

These templates have no argument.

These templates of the C TCDF are:

pre-start = "\nmain() {\n start:"

pre-init = "\n init:"

pre-loop = "\n loop:"

pre-next = "\n next:"

post-next = " goto loop;\n}"

5.5. Algebra dependent definitions in a target code definition file

For each algebra supported by the considered target code, a section must be created in the TCDF, with the type name
of the algebra. In the C TCDF, it can be found the[int] section that correspond to the integer algebra.

This section defines some general template, and the templates of all the supported operators of the algebra.

5.5.1. init template

This template is used to initialize the algebra (4) in the considered target code. This template has no argument.

Theinit template of the C TCDF for the integer algebra is:

init = /* get/putint functions */\

int getint(int port) {\

int tmp;\

if (scanf ("%%d", &tmp) == EOF) exit(0);\

return tmp;\

}\

#define putint(port,value) printf("%%d ", value)\n

5.5.2. data template

This template is used to convert a data recognized by thecheck regular expression of the corresponding algebra
(4.1) into a data of the target code.

This template has one argument, the data. This template is generally used with the assembler languages that have to
prefix the direct data.

Thedata template of the C TCDF for the integer algebra is:

data = "%s"

5.5.3. declare template

This template is used in the declaration section (5.1) to declare the identifier with the considered type.

It has two arguments, a type name and an identifier. The identifier is treated by theidentifier> template of

the TCDF (5.4.7). The type name is the type used by the algebra (4.1).

Thedeclare template of the C TCDF for the integer algebra is:

declare = "%s %s;"

5.5.4. assign template

This template is used in all the sections of the auxiliary file to put a value in the variables. It has two arguments, the
identifier name and the value.

The identifier is treated by theidentifier> template of the TCDF (5.4.7).

5.5. Algebra dependent definitions in a target code definition file 23

The value is the production of one of the target templates.

Theassign template of the C TCDF for the integer algebra is:

assign = "%s = %s;"

5.5.5. Operators templates

For each used operator of an algebra,lambda-flow must find a template in the TCDF.

The template is formed with the signature of the operator, followed by the template string itself. The number of
argument of the template string depends on the considered operator.

For example, the template of the C TCDF for the integer algebra is for the+ operator defined in the algebra (4.6)
is:

+ = int->int->int, "(%s) + (%s)"

5.5.6. Input/output operators templates

For each algebra, the TCDF must contains two additional operators which are not defined in the algebra: they are the
input/output operator.

lambda-flow uses the name@in and@out for these operators. The input operator has one argument, the input
port number, as an integer. It returned value has the type of the considered algebra.

The output operator has two arguments, the output port number as an integer and the output value. The type of the
second argument depends on the considered algebra.

The template of the C TCDF for the integer algebra is for the input/output operators are:

@in = int->int, "getint (%s)"

@out = int->int->int, "putint (%s, %s)"

Notice that the non-standard C functiongetint() andputint() are defined in theinit template of the integer
algebra of the C TCDF (5.5.1).

5.6. Samples of target code definitions

In this section, we present three TCDF for three very different language, such as C, Scheme and the 386 assembler.

5.6.1. The C target code definition file

24 Chapter 5. target code

[target]

extension = c

command = "gcc %s %s -o %s"

linear = yes

comment = "/* %s */"

width = 50

init = #include <stdio.h>\n

identifier = "%s"

alternative = "(%s) ? (%s) : (%s)"

pre-start = \nmain() {\n start:

pre-init = "\n init:"

pre-loop = "\n loop:"

exit = " if (%s) exit(0);"

pre-next = "\n next:"

post-next = " goto loop;\n}"

[int]

declare = "static int %s;"

assign = " %s = %s;"

init = "/* get/putint functions */\

int getint(int port) {\

int tmp;\

if (scanf ("%%d", &tmp) == EOF) exit(0);\

return tmp;\

}\

#define putint(port,value) printf("%%d ", value)\n"

data = "%s"

+/- = int->int, "- (%s)"

+ = int->int->int, "(%s) + (%s)"

- = int->int->int, "(%s) - (%s)"

* = int->int->int, "(%s) * (%s)"

/ = int->int->int, "(%s) / (%s)"

% = int->int->int, "(%s) % (%s)"

= = int->int->int, "(%s) == (%s)"

> = int->int->int, "(%s) > (%s)"

< = int->int->int, "(%s) < (%s)"

>= = int->int->int, "(%s) >= (%s)"

<= = int->int->int, "(%s) <= (%s)"

<> = int->int->int, "(%s) != (%s)"

<< = int->int->int, "(%s) << (%s)"

>> = int->int->int, "(%s) >> (%s)"

& = int->int->int, "(%s) & (%s)"

| = int->int->int, "(%s) | (%s)"

&& = int->int->int, "(%s) && (%s)"

|| = int->int->int, "(%s) || (%s)"

zero = int->int, "(%s)"

@in = int->int, "getint (%s)"

@out = int->int->int, "putint (%s, %s)"

5.6.2. The Scheme target code definition file

5.6. Samples of target code definitions 25

[target]

extension = scm

command =

linear = no

comment = "; %s"

width = 50

init =

identifier = "%s"

alternative = "(if %s %s %s)"

pre-start = "(let* ("

pre-init = ")\n(let loop ("

pre-loop = ")\n(let* ("

exit = "(if (not (zero? %s)) (exit))"

pre-next = ")\n(loop "

post-next = "))))\n"

[int]

declare =

assign = " (%s %s)"

init = "; get/putint functions\

(define (getint port) (read))\

(define (putint port value) (display value))\

(define (bool->int bool) (if bool 1 0))\

(define (int->bool int) (if (zero? int) #f #t))\n"

data = "%s"

+/- = int->int, "(- %s)"

+ = int->int->int, "(+ %s %s)"

- = int->int->int, "(- %s %s)"

* = int->int->int, "(* %s %s)"

/ = int->int->int, "(/ %s %s)"

% = int->int->int, "(modulo %s %s)"

= = int->int->int, "(bool->int (eq? %s %s))"

> = int->int->int, "(bool->int (> %s %s))"

< = int->int->int, "(bool->int (< %s %s))"

>= = int->int->int, "(bool->int (>= %s %s))"

<= = int->int->int, "(bool->int (<= %s %s))"

<> = int->int->int, "(not (eq? %s %s)))"

<< = int->int->int, "(* %s (* 2 %s))"

>> = int->int->int, "(inexact->exact (/ %s (* 2 %s))"

& = int->int->int, "(error)"

| = int->int->int, "(error)"

&& = int->int->int, "(bool->int (and (int->bool %s)(int->bool %s)))"

|| = int->int->int, "(bool->int (or (int->bool %s)(int->bool %s)))"

zero = int->int, "(zero? %s)"

@in = int->int, "(getint %s)"

@out = int->int->int, "(putint %s %s)"

5.6.3. The 386 assembler target code definition

This TCDF intensively uses theslang language to perfor proper assembly output.

[target]

extension = s

26 Chapter 5. target code

command = "gas %s %s -o %s"

linear = yes

comment = "; %s"

width = 20

init = slang () {\

return ".data";\

}\

variable label = 0;\

define alternative (a1, _cond, a2, _then, _else) {\

label++;\

return Sprintf ("L_if_%d: \n \

cmp %s, %s \n \

j%s L_then_%d \n \

L_else_%d:\n%s \n \

jmp L_end_%d \n \

L_then_%d:\n%s \n \

jmp L_end_%d \n \

L_end_%d:", \

label, a1, a2, _cond, label, \

label, _else, label, \

label, _then, label, label,\

12);\

}

identifier = "%s"

alternative = slang (_cond, _then, _else) {\

variable __then = Sprintf (" mov.w ax, %s", _then, 1),\

__else = Sprintf (" mov.w ax, %s", _else, 1);\

return alternative (_cond, "ne", "0", __then, __else);\

}

pre-start = "\n\n.text\nmain:"

pre-init = "\ninit:"

pre-loop = "\nloop:"

exit = "\nexit:\n cmp.w %s, 0\n je continue\n jmp end\n\ncontinue:"

pre-next = "\nnext:"

post-next = "\n jmp loop\n\nend:\n"

[int]

init =

declare = " %s .word"

assign = slang (name, value){\

if (is_substr (value, " "))\

return Sprintf ("%s\n mov.w %s, ax", value, name, 2);\

else \

return Sprintf (" mov.w %s, %s", name, value, 2);\

}

init =

data = "$%s"

+/- = int->int, " neg.w ax"

+ = int->int->int, " add.w %s, %s"

- = int->int->int, " sub.w %s, %s"

* = int->int->int, " mov.w ax, %s\n imul.w %s"

/ = int->int->int, " mov.w ax, %s\n idiv.w %s"

% = int->int->int, " mov.w cx, %s\n \

mov.w ax, cx\n \

mov.w bx, %s\n \

5.6. Samples of target code definitions 27

idiv.w bx\n \

sub.w cx, ax"

= = int->int->int, slang (a1, a2) {

return alternative (a1, "eq", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

> = int->int->int, slang (a1, a2) {

return alternative (a1, "g", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

< = int->int->int, slang (a1, a2) {

return alternative (a1, "l", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

>= = int->int->int, slang (a1, a2) {

return alternative (a1, "ge", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

<= = int->int->int, slang (a1, a2) {

return alternative (a1, "le", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

<> = int->int->int, slang (a1, a2) {

return alternative (a1, "ne", a2, \

" mov.w ax, 1", " mov.w ax, 0");

}

<< = int->int->int, " shl %s, %s"

>> = int->int->int, " shr %s, %s"

& = int->int->int, " and %s, %s"

| = int->int->int, " or %s, %s"

= int->int->int, " xor %s, %s"

&& = int->int->int, slang (a1, a2) {\

variable _else = alternative (a2, "e", "0", \

" mov.w ax, 0", " mov.w ax, 1");\

return alternative (a1, "e", "0", " mov.w ax, 0",

_else);\

}

|| = int->int->int, slang (a1, a2) {\

variable _then = alternative (a2, "e", "0", \

" mov.w ax, 0", " mov.w ax, 1");\

return alternative (a1, "e", "0", \

_then, "movw ax, 1");\

}

zero = int->int, slang (a1, a2) {

return alternative (a1, "e", "0", \

" mov.w ax, 1", " mov.w ax, 0");

}

@in = int->int, " in %s"

@out = int->int->int, slang (port, value) {\

return Sprintf (" mov.w ax, %s\n out %s",\

value, port, 2);\

}

Chapter 6. Theslang language

Theslang language comes from the package ofJohn E. Daviswhich can be obtained in

ftp://space.mit.edu/pub/davis/slang/

In this section, we present a subset of this language useful for the TCDF template string.

6.1. Introduction

slang (pronounced “sssslang”) is a powerful stack based interpreter that supports a C-like syntax. It has been
designed from the beginning to be easily embedded into a program to make it extensible.slang also provides a way
to quickly develop and debug the application embedding it in a safe and efficient manner. Sinceslang resembles
C, it is easy to recodeslang procedures in C if the need arises.

Theslang language features both global variables and local variables, branching and looping constructs, as well
as user defined functions. Unlike many interpreted languages,slang allows functions to be dynamically loaded
(function auto-loading). It also provides constructs specifically designed for error handling and recovery as well as
debugging aids (e.g., trace-backs).

The core language currently implements signed integer, string, and floating point data types. Applications may also
create new types specific to the application (e.g., complex numbers). In addition,slang supports multidimensional
arrays those types as well as any application defined types.

The syntax of the language is quite simple and is very similar to C.Unlike C,slang variablesare untyped and inherit
a type upon assignment. The actual type checking is performed at run time. In addition, there is limited support for
pointers.

6.2. Variables

slang is an untyped language and only requires that an variable be declared before it is used. Variables are declared
using thevariable keyword followed by a comma separated list of variable names, e.g.,

variable larry, curly, moe;

As in C, all statements must end with a semi-colon. Variables can be declared to be eitherglobalor local. Variables
defined inside functions are of the local variety and have no meaning outside the function.

It is legal to execute statements in a variable declaration list. That is,

variable x = 1, y = sin (x);

are legal variable declarations. This also provides a convenient way of initializing a variable.

The variable’s type is determined when the variable is assigned a value. For example, in the above example,x is an
integer andy is a float since1 is an integer and thesin function returns a floating point type.

6.3. Functions

Like variables, functions must be declared before they may be used. Thedefine keyword is used for this purpose.
For example,

define factorial ();

is sufficient to declare a function namedfactorial . Unlike variable keyword, thedefine keyword does not
accept a list of names. Usually, the above form is used only for recursive functions. The function name is almost
always followed by a parameter list and the body of the function, e.g.,

define my_function (x, y, z) {

28

6.3. Functions 29

<body of function>

}

Herex , y , andz are also implicitly declared as local variables. In addition, the function body must be enclosed in
braces.

Functions may return zero, one or more values. For example,

define sum_and_diff (x, y) {

variable sum, diff;

sum = x + y; diff = x - y;

return sum, diff;

}

is a function returning two values.

Please note when calling a function that returns a value, the value returned cannot be ignored. See the section below
on assignment statements for more information about this important point.

6.4. Statements and Expressions

A statement may occur globally outside of functions or locally within functions. If the expression occurs inside a
function, it is executed only when the function is called.However, statementswhich occur outside a function context
are evaluated immediately.

All statements must end in a semi-colon.

6.4.1. Assignment Statements

An assignment statement follows the syntax:

<ttiable name> = <expression>;

Whitespace is required onbothsides of the equal sign. For example,

x = sin (y);

is correct but

x =sin(y); x= sin(y); x=sin(y);

will generate syntax errors.

Often, functions return more than one value. For example,

define sum_and_diff (x, y) {

return x + y, x - y;

}

returns two values. The most general assignment statement syntax is

(<var_1>,<var_2>,...,<var_n>) = <expression>;

e.g.,

(s, d) = sum_and_diff (10, 2);

To ignore one of the return values, simply omit the variable name from the list. For example,

(s,) = sum_and_diff (10, 2);

may be used if one is only interested in the first return value.

Some functions return a variable number of values. Usually, the first value will indicate the actual number of return
values.

For example, thefgets function returns either one or two values. If the first value is zero, there is no other return
value. In this case, one must use another form of assignment since the previously discussed forms are inadequate.
For example,

n = fgets (fd);

if (n != 0) {

30 Chapter 6. Theslang language

s = ();

.

.

}

In thisexample, the first value returned isassigned ton and tested. If it isnon-zero, the second return value isassigned
to s . The empty set of parenthesis is required.

Please note that RETURN VALUESCANNOT BE IGNORED.There are several waysof dealing with a return value
when one does not care about it. For example, the functionfflush returns a value. However, most C programs that
call this function almost always ignore the return value. Inslang, one can use any of the following forms:

variable dummy;

dummy = fflush (fd);

() = fflush (fd);

fflush (fd); pop ();

The second form is perhaps the most clear way of indicating that the return value is being ignored.

6.4.2. Binary Operators

slang supports a variety of binary operators. These include the usual arithmetic operators (+, - , * , /, andmod), the
comparison operators (>, >=, <, <=, != , and==) as well boolean operators (or andand) and bitwise operators (| , \& ,
xor , shl andshr). Like the assignment operator, these operators must also be surrounded by whitespace. That is,

x = y + z;

is a legal statement butx = y+z; is not legal.

To use these operators effectively, in addition to understanding the meaning of the operation, one must also
understand the precedence level of the operator.

In slang, there are only three levels of precedence. The highest level consists of the* , /, andmod operators. The
second level consists of the+ and- operators.All other binary operators fall into the last level of precedence.Within
a precedence level, operators are evaluated left to right. Parenthesis may be used to change the order of evaluation.
For example, the expression:

a == b or c == d

IS NOT the same as:

(a == b) or (c == d)

since== andor share the same level of precedence. In fact, the expression without parenthesis is evaluated left to
right and is equivalent to((a == b) or a) == c .

Finally,slang supports the increment and decrement operators++ and–, and the arithmetic assignment operators
+= and-= . Presently, these operators only work with integer types and a type mismatch error will result from the
use of these operators with other types.

These following table shows the meaning of these operators.

Expression Meaning

———- ———

++x; x = x + 1;

x++; x = x + 1;

–x; x = x - 1;

x–; x = x - 1;

x += n; x = x + n;

x -= n; x = x - n;

Note thatslang does not distinguish betweenx– and–x since neither of these forms return a value as they do in
C. With this in mind, do not use constructs such as:

while (i–) % test then decrement

while (–i) % decrement first then test

6.4. Statements and Expressions 31

Instead, use something like

while (i, i–) % test then decrement

while (i–, i) % decrement first then test

These operators work only on simple scalar variables. In particular,++(x) is NOT the same as++x and will generate
an error.

Whenever possible, these latter four operations should be used since they execute 2 to 3 times faster than the longer
forms.

6.4.2.1 Short Circuit Boolean Evaluation

The boolean operatorsor andand ARE NOT SHORT CIRCUITED as they are in some languages.slang uses
theorelse andandelse operators for short circuit boolean evaluation. However, these are not binary operators.
Expressions of the form:

<expr_1> and <expr_2> and <expr_3> ... and <expr_n>

can be replaced by the short circuited version usingandelse :

andelse {<expr_1>} {<expr_2>} {<expr_3>} ... {<expr_n>}

A similar syntax holds for theorelse operator. For example, consider the statement:

if ((x != 0) and (1 / x < 10)) do_something ();

Here, if x were to have a value of zero, a division by zero error would occur because even thoughx != 0 evaluates
to zero, theand operator is not short circuited and the1 x/ expression would be evaluated.For this case, theandelse

operator could be used to avoid this problem:

if (andelse

{x != 0}

{1 / x < 10}) do_something ();

6.4.3. Unary Operators

The UNARY operators operate only upon a single integer. They are defined by the following table below. In this
table, the variablei is an integer type andx represents either a floating point or integer variable.

Unary Expr. Meaning

———– ————————————————-

not (i) if i is non-zero return zero else return non-zero (i) bitwise

not

sqr(x) the square of x

mul2(x) multiplies x by 2

chs (x) change the sign of x

-x same as chs (x)

sign (x) +1 if x > 0, -1 if x < 0, and 0 if x equals 0

abs (x) absolute value of x

Note the following points:

• All unary operators exceptnot and operator on both integer and floating point types.

• The! operator used in C is not used inslang, not must be used instead.

• The bitwise not operator must enclose its argument in parenthesis.i will be flagged as a syntax error.

• Some applications which embedslang may overload these operators to work with application defined data
types.

6.4.4. Data Types

Currently,slang only supports integer,floatingpoint (double precision),and character stringdata types.It ispossible
for an application that embedsslang to define other, application specific, data types (e.g., complex numbers). In
addition, the language supports arrays of any of these types (including application specific types).

32 Chapter 6. Theslang language

6.4.4.1 Integers

Unsigned integers are not supported. An integer can be specified in one of several ways:

• As a decimal integer consistingof the characters0 through9, e.g.,127 .The number cannot begin with a leading
0. That is,0127 is not the same as127 .

• Using hexadecimal (base 16) notation consisting of the characters0 to 9 andA throughF. The hexadecimal
number must be preceded by the characters0x . For example,0x7F is the same thing as decimal127 .

• In Octal notation using characters0 through7. The Octal number must begin with a leading0. For example,
0177 is the same thing as127 decimal.

• Using character notation containing a character enclosed in single quotes as’a’ . The value of the integer
specified this way will lie in the range 0 to 256 and will be determined by the ASCII value of the character in
quotes. For example,
i = ’0’;

results in a value of 48 fori since the character0 has an ASCII value of 48.

Strictly speaking,slang has no character type.

Any integer may be preceded by a minus sign to indicate that it is a negative integer.

6.4.4.2 Floating Point Numbers

Floatingpoint numbersmust contain either a decimal point or an exponent (or both).Here are examplesof specifying
the same floating point number:

12., 12.0, 12e0, 1.2e1, 120e-1, .12e2

Note that12 is NOT a floating point number since it contains neither a decimal point nor an exponent. If fact,12

is an integer.

6.4.4.3 Strings

A literal string must be enclosed in double quotes as in:

"This is a string".

Although there is no imposed limit on the length of a string, literal strings must be less than 256 characters. It is
possible to go beyond this limit by string concatenation. Any character except a newline (ASCII 10) or the null
character (ASCII 0) may appear in thedefinition> of the string.

The backslash is a special character and is used to include special characters (such as a newline character) in the
string. The special characters recognized are:

\" – double quote

\’ – single quote

\\ – backslash

\a – bell character

\t – tab character

\n – newline character

\e – escape (S-Lang extension)

\xhhh – character expressed in HEXADECIMAL notation

\ooo – character expressed in OCTAL notation

\dnnn – character expressed in DECIMAL (S-Lang extension)

For example, to include the double quote character as part of the string, it is to be preceded by a backslash character,
e.g.,

"This is a \"quote\""

6.4.5. Mixing integer and floating point arithmetic

If a binary operation (+, -, * , /) is performed on two integers, the result is an integer. If at least one of the operands
is a float, the other is converted to float and the result is float. For example:

11 / 2 –> 5 (integer)

6.4. Statements and Expressions 33

11 / 2.0 –> 5.5 (float)

11.0 / 2 –> 5.5 (float)

11.0 / 2.0 –> 5.5 (float)

Finally note that only integers may be used as array indices, for loop control variables, shl, shr, etc bit operations.
Again, if there is any doubt, use the conversion functionsint andfloat where appropriate:

int (1.5) –> 1 (integer)

float(1.5) –> 1.5 (float)

float (1) –> 1.0 (float)

6.4.6. Conditional and Branching Statements

slang supports a wide variety of looping (while , do while , loop , for , forever , and_for) and branching (if ,
!if , else , andelse , orelse , andswitch) statements.

These constructs operate on code statements grouped together inblocks. A block is a sequence ofslang statements
enclosed in braces and may contain other blocks. However, a block cannot include function declarations; function
declarations must take place at the top level. In the following,statement refers to either a singleslang statement
or to a block of statements and{ block } refers to a block of statements.

6.4.6.1 if, if-else

if (expression) statement;

Evaluatesstatement if the result of expression is non-zero. Theif statement can also be followed by an
else :

if (expression) statement; else statement;

6.4.6.2 !if

!if (expression) statement;

Evaluatesstatement if expression is evaluates to zero. Note that there is no!if-else statement.

6.4.6.3 orelse, andelse

These constructs were discussed earlier. The syntax for theorelse statement is:

orelse { block } { block } ... { block }.

This causes each of the blocks to be executed in turn until one of them returns a non-zero integer value. The result
of this statement is the integer value returned by the last block executed. For example,

orelse { 0; } { 6; } { 2; } {3; }

returns6 since the second block returns the non-zero result6 and the last two block will not get executed.

The syntax for theandelse statement is:

andelse { block } { block } ... { block }.

Each of the blocks will be executed in turn until one of them returns a zero value. The result of this statement is the
integer value returned by the last block executed. For example,

andelse { 6; } { 2; } { 0; } {4; }

returns0 since the third block will be the last to execute.

6.4.6.4 while

while (expression) statement;

Repeatstatement while expression returns non-zero. For example,

j = 20; i = 10; while (i) { j = j + i; i = i - 1; }

will cause the block to execute 10 times.

34 Chapter 6. Theslang language

6.4.6.5 do-while

do statement; while (expression);

Executestatement then testexpression . Repeat whileexpression is returns non-zero. This guarantees that
statement will be executed at least once.

6.4.6.6 for

for (expr1; expr2; expr3) statement;

Evaluateexpr1 first. Then loop executingstatement while expr2 returns non-zero. After every evaluation of
statement evaluateexpr3 . For example,

variable i, sum;

sum = 0;

for (i = 1; i <= 10; i++) sum += i;

computes the sum of the first 10 integers.

6.4.6.7 loop

loop (n) statement;

Evaluatestatement n times. If n is less than zero,statement is not executed.

6.4.6.8 forever

forever statement;

Loop evaluating statement forever. Forever means until either abreak or return statement is executed.

6.4.6.9 switch

The switch statement deviates the most from its C counterpart. The syntax is:

switch (x)

{ ... : ...}

.

.

{ ... : ...}

Here the objectx is pushed onto the stack and the sequence of blocks is executed. The: operator is aslang special
symbol which means to test the top item on the stack, if it is non-zero, the rest of the block is executed and control
then passesout of the switch statement.If the test is false,execution of the block is terminated and the process repeats
for the next block.

The special keywordcase may be used to compare the value of objects. It returns non-zero if the objects correspond
to the same object and zero otherwise.

For example:

variable x = 3;

switch (x)

{ case 1: print("Number is one.")}

{ case 2: print("Number is two.")}

{ case 3: print("Number is three.")}

{ case 4: print("Number is four.")}

{ case 5: print("Number is five.")}

{ pop(); print ("Number is greater than five.")}

Herex is assigned a value of 3 and theswitch statement pushes the 3 onto the stack. Control then passes to the first
block. The first block uses thecase construct to compare the top top stack item (3) with 1. This test will result with
zero at the top of the stack. The: operator will then pop the top stack item and if it is zero, control will be passed
to the next block where the process will be repeated. In this case, control will pass to the second block and on to
the third block. When the: operator is executed for the third block, a non-zero value will be left on the top of the
stack and theprint function will be called. Control then passes onto the statement following the last block of the

6.4. Statements and Expressions 35

switch statement.

Note that, in thisexample, the last block doesnot test the value ofx against anything. Instead, if thisblock isexecuted,
the top stack item (the value ofx in this case) will be removed from the stack by thepop function and the rest of the
block executed.

Unlike most other languageswith some form of switch statement,x doesnot have to be a simple integer.For example,
the following is perfectly acceptable:

variable x;

x = "three";

switch (x)

{ case "one": print("Number is 1.")}

{ case "two": print("Number is 2.")}

{ case "three": print("Number is 3.")}

{ case "four": print("Number is 4.")}

{ case "five": print("Number is 5.")}

{ pop(); print ("Number is greater than 5.")}

Again, thecase function is used to test the top stack item and the last block serves as a “catch-all”.

6.4.6.10break, return, continue

slang also includes the non-local transfer functionsreturn ,break , andcontinue .Thereturn statement causes
control to return to the calling function while thebreak andcontinue statements are used in the context of loop
structures. Here is an example:

define fun () {

forever

{

s1;

s2;

..

if (condition_1) break;

if (condition_2) return;

if (condition_3) continue;

..

s3;

}

s4;

..

}

Here, a functionfun has been defined that includes aforever loop which consists of statementss1 , s2 , ...,s3 and
3 boolean conditions. As long ascondition_1 , condition_2 , andcondition_3 return 0, statementss1 , s2 , ...,
s3 will be repeatedly executed. However, ifcondition_1 returns a non-zero value, thebreak statement will get
executed, and control will pass out of theforever loop to the statement immediately following the loop which in
this case iss4 . Similarly, if condition_2 returns a non-zero number,return will cause control to pass back to the
caller of fun . Finally, thecontinue statement will cause control to pass back to the start of the loop, skipping the
statements3 altogether.

6.4.7. Arrays

Arraysare created using the function callcreate_array .The type of the array and the size of the array are specified
by parameters to this function. The calling syntax is:

x = create_array (<type>, i_1, i_2 ... i_dim, dim);

Here adim dimensional array of type specified bytype is created. The size of the array in thenth dimension is
specified by the parametersi_1 ...i_n parameter. Thetype parameter may be any one of the values given in the
following table:

Parameter Type of array

36 Chapter 6. Theslang language

——— ————-

’S’ array of strings

’F’ array of floats

’I’ array of integers

’C’ array of characters

Other integer values for the type may be given for applications which defined application specific types to create
arrays of those types.

In the current implementation,dim cannot be larger than 3. Also note that space is dynamically allocated for the
array and that, upon assignment, copies of the array are NEVER used. Rather, references to the array are used by the
assignment statements.

For example:

variable a = create_array (’F’, 10, 20, 1);

variable b = a;

This creates a 2 dimensional 10 x 20 array of 200 floats and assigns it toa. The second statement makes the variable
b also refer to the array specified by variablea.

Accessing a specific element of the array may be accomplished by placing the “coordinates”of the element in square
brackets. For example, to access the (3, 4) element of the above array usea[3, 4] . Note that this differs from the
way the C language specifies array access and that, like the C language, array subscripts start from 0.

Finally, array notation may also be used for extracting characters from a string. For example, if one has:

variable ch, s = "Hello World";

thench = s[0] could be used to extract the first character from the strings . However, this syntax cannot be used
to replace characters in the string, i.e.,s[0] = ch is illegal and will generate an error. For the latter case, one must
either use thestrsub function or use a character array.

Examples:

Here is a function that computes the trace (sum of the diagonal elements) of a square 2 dimensional n x n array:

define array_trace (a, n) {

variable sum = 0, i;

for (i = 0; i < n; i++) sum = sum + a[i, i];

return sum;

}

This fragment creates a 10 x 10 integer array, sets its diagonal elements to 5, and then computes the trace of the
array:

variable a, j, the_trace;

a = create_array(’I’, 10, 10, 2);

for (j = 0; j < 10; j++) a[j, j] = 5;

the_trace = array_trace(a, 10);

6.4.8. Stack Operators

The use of local variables greatly simplifies the task of maintaining the stack. Nevertheless,slang is really a stack
based language and there are times when they are useful.

pop % removes the top object from the stack

dup % duplicates the top object on the stack

exch % exchanges top 2 objects on the stack

These operators work on all data types – they are not limited to integers.

Chapter 7. Using the compiler

7.1. Compiler command line options

The compiler is invoked with the following command:

$ flow [option]* [files]*

where[option] is zero or more options of the list given above, and[files] is zero or mode source files.

All the options have a long name that begin with–.Certain options have also a short single character name that begin
with - . The possible options oflambda-flow compiler are:

[–algebra | -a] alg load algebra ‘alg’ (4). The name could be a complete file name, such as
\ usr\/local\/lib\/flow\/integer.alg/, or more simply the nameinteger is the path of the file is added in the
standard path with the–path option.

–analysis analysis only the input file in order to check the error.

[–compile|-c] compile only the input file.

–convert parse the inputs files. Used with the–group option, this allows the user to know howlambda-flow
has grouped the expression.Used with the–short option, this allows the conversion between the short and the
long syntax.

–errors err set the max error count to ‘err’. If ‘err’ is 0, there is no error count limit. This is not recommended
because if your program is too cyclic, the compiler could display a lot of errors.

–group groups expressions in parse result with parenthesizes.

[–help | -h] display thelambda-flow help.

[–keep | -k] keep auxiliaryfiles.The auxiliaryfile are produced bylambda-flowand given to the post-compiler.
With this option,lambda-flow do not erase the auxiliary file.

–license display thelambda-flow license.

–linear forces output code to be linearized.

–log file sets the log file to ‘file’. If file is ‘stderr’, the standard error file is used.lambda-flow could be
extremely verbose (see the–verbose option). Generally, the displayed messages are used to understand how
lambda-flow work, or to debug it. If you do not understand an error display by the compiler, use the log
file.

[–output | -o] file set the output file to ‘file’. This file is used with the–compile option to produce a file
named ‘file’. It is also used as auxiliary file, with the target extension added (5.4.1), and as output file of the
post compiler (5.4.2).

[–path | -p] path adds ‘path’ as a standard program path.lambda-flow keep a list of path. It uses this list
when you try to open a file not in the current path. This list is used for the source files, the algebra definition
files and the target code definition files.The other way to add a standard path is to define it with the environment
variableLAMBDA_FLOW_PATH(several paths could be added this way, if they are separated with:).

–pcos opts post-compiler options set to ‘opts’. This option allow to give some additional options to the
post-compiler.

37

38 Chapter 7. Using the compiler

–ppos opts preprocessor options set to ‘ppos’. Iflambda-flow is compiled with the preprocessor support, this
option allows to give some options to the preprocessor.

–regExCheck run thelambda-flow compiler as the regular expression interactive test (4.2). Then, the user can
checks its regular expressions.

–regress regression tests. Iflambda-flow is compiled with the regression test support, it could be run on
the provided regressions test file. A regression file is alambda-flow source file where the name has a special
format. The name is composed withxxx-y.z wherexxx could besyn (syntactic test),sem (semantics test),
com (compilation test),cod (code production test) orexe (runtime test),y the test number andz the number
of error found bylambda-flow (x for an undetermined number of error).

–regressSet with this option,lambda-flow set the error value to the given regression test file.

–short The compiler display the conversion result with the short syntax.

–stop out The stopping condition of the source program is set to the output (in thelambda-flow meaning) ‘out’.
The evaluation of the stopping condition is done with theexit template (5.4.9).

[–target | -t] trg Set the target output code to ‘tgr’. The option could be a complete target file name such as
\usr\ local\/lib\/flow\/c.trg/ or simply the name of the target such asc is the corresponding target file path is
added with the–path option.

[–verbiage | -v] n verboseoperation level isset to ‘n’.n isa logicalor of the value given in the VERBIAGE
file in the root directory of the distribution.

–width n set the indent width to ‘n’ for the comments that the compiler generate.

7.2. Initialization file

In order to avoid long command line,lambda-flow support some options to be put in an initialization file. The
name of this file isflow.ini /.

The compiler first tries to load this file in the current working directory, then in the user home directory, and in the
library installation directory, and at least in the directory where the compiler executable is installed.

This file has the following form:

[flow]

errors = 50

path = /usr/local/lib/flow

algebra = integer boolean

target = c

libraries = default.lf

default = debug.lf

verbiage = 65535

preprocessor = cpp -P %s %s -o %s

logfile = flow.log

where:

errors set the maximal error count ;

path adds some blank separated paths as standard paths ;

algebra loads the blank separated algebra

target loads the target code definition file;

libraries load always the file specified in this list;

default if no source files are specified on the command line, loads this default file;

7.2. Initialization file 39

verbiage set the verbiage level ;

preprocessor set the preprocessor ;

log file set the log file.

7.3. Compile a single file program

The simplest form of programming inlambda-flow is to keep the sources in a single file.

In order to invoke the compiler on the file that contain our example (1.2), just type:

$ flow example.lf

The default option are set in theflow.ini file (7.2). By default, the C target code is chosen. You can see in your
working directory a filea.out produced by the post-compiler of the C TCDF, which is set togcc (5.6.1).

If you want to see the C auxiliary file produced bylambda-flow, use the-k command line option, that avoid the
auxiliary file to be deleted. Just type:

$ flow example.lf -k

Notice the place of the option is not important with the compiler. This command produce a filea.c . If you want to
have another target code, simply type:

$ flow -t scheme example.lf

which produce a filea.scm which is a Scheme source file. If you want to specify your own algebra, you could
use:

$ flow -a /path/my-algebra.alg example.lf

7.4. Invoking the preprocessor

Before processes the source file,lambda-flow could use a preprocessor. You can specify the preprocessor in the
file.ini file. Notice that thelambda-flow parser automatically detects the#line directive produced by the C
preprocessor.

You could pass some options to the preprocessor with a command line option. Simply type:

$ flow -ppos "-I. -Dlow_noise" example.lf

and the preprocessor is invoked with the option-I. -Dlow_noise . Notice the use of“” around the options.

So you can include some header files with the#include directive of the C preprocessor.

7.5. Compile a multi-files program

lambda-flow is able to compile a source file separately. Due to the nature of the language, it is impossible to
produce target code for partial source file.lambda-flow produce alambda-flow flattened program, with the
same interface.

If your project havef_1.lf , f_2.lf , ...,f_n.lf as source files, you can invoke the compiler for each source file
with:

$ flow -c f_i.lf -o f_i.lo

where-c is compile-only option, and wheref_i.lo is the produced file. Then, you can link all these file together
with:

$ flow f_1.lo f_2.lo ... f_n.lo -o a.out

which produces the executable (according to the target option)a.out .

Chapter 8. Getting, compiling and installing
lambda-flow

This chapter contains:

• Installation instructions and notes for lambda-flow

• Where to get more information on lambda-flow

• Common problems

• Information on porting the program

• Obtaining the missing pieces of lambda-flow

8.1. Installation instructions for lambda-flow

Theconfigure shell script attempts to guess correct values for various system-dependent variables used during
compilation,and creates the Makefile. It also creates a fileconfig.status that you can run in the future to recreate
the current configuration.

To compile this package:

8.1.1. Configuring

Normally, you justcd to the directory containing the package’s source code and type. configure/. If you’re using
csh on an old version of System V, you might need to typesh configure instead to preventcsh from trying to
executeconfigure itself (under AIX, you may need to use ksh instead of sh).

Runningconfigure takes a while.While it is running, it prints some messages that tell what it is doing. If you don’t
want to see any messages,runconfigure with itsstandard output redirected to\ dev/null/; for example,.\ configure
\>\/dev\/null/.

To compile the package in a different directory from the one containing the source code, you must use a version
of make that supports theVPATHvariable, such as GNUmake. cd to the directory where you want the object files
and executables to go and run theconfigure script.configure automatically checks for the source code in the
directory thatconfigure is in and in.. . If for some reasonconfigure is not in the source code directory that
you are configuring, then it will report that it can’t find the source code. In that case, run ‘configure/ with the option
–srcdir=DIR , where DIR is the directory that contains the source code.

By default,make install will install the package’s files in usr/local/bin/, usr/local/man/, etc. You can specify an
installation prefix other than usr/local/ by givingconfigure the option–prefix=PATH . Alternately, you can do
so by consistently giving a value for theprefix variable when you runmake, e.g.,

$ make prefix=/usr/gnu

$ make prefix=/usr/gnu install

You need to have the package regex installed. You can specify the path of regex.o with the configure option
–with-regex-o=fullpath filename/.

lambda-flow is recommended to be compiled with the slang package. You can specify the slang library path with
the configure option–with-slang-lib=filename . filename will be added to the linker option as-lfilename .
If the path is not the standard, use the configure option–libdir=fullpath .

lambda-flow can be compiled with the garbage collector fromHans-J. Boehm and Alan J. Demers. You can use
the configure option–with-gc-lib=filename . filename will be added to the linker options as-lfilename .
If the path is not the standard, use the configure option–libdir=fullpath . If you cannot get a proper GC library,
the configure option–without-gc could be used. In this case, $lambdaFlow willmalloc() memory allocator
without anyfree() call. In fact, this is not a real problem becauselambda-flow is designed to use carefully the
memory. The DOS version does not have a garbage collector.

40

8.1. Installation instructions for lambda-flow 41

configure also recognizes the following options:

elp Print a summary of the options toconfigure , and exit.

–quiet

–silent Do not print messages saying which checks are being made.

–verbose Print the results of the checks.

–version Print the version of Autoconf used to generate theconfigure script, and exit.

–includedir=PATH PATH is an additional path for the c header files

–libdir=PATH PATH is an additional path for the c library files

–with-cc=CC uses another c compiler. This option is used to obtain a DOS binary with–with-cc=gcc-dos .
The default c compiler is detected byconfigure .

–without-gc do not use the garbage collector GC. By default, GC is used.

–with-gc-lib=LIB use LIB as gc lib. If the GC lib is libgc-linux.a, the LIB option is gc-linux. The path
of the library should specified with–libdir . The path of the gc.h header file should be specified with
–includedir

–without-slang do not use the slang library. By default, slang is used.

–with-slang-lib=LIB specifiestheslang library.If theslang library is libslang-linux.a,theLIBoption should
be slang-linux. The path of the library should specified with–libdir . The path of the gc.h header file should
be specified with–includedir . The default slang library islibslang.a .

–with-regex-o=FILE FILE is the regex.o package. FILE must be the full path name. The default file is
regex.o

–enable-regression enable regressions tests. The regression test will be not useful for the normal user. By
default, regressions tests are not set.

–without-preprocessor do not use any preprocessor. Lambda-flow can process the source file with a
specified preprocessor (the default preprocessor is cpp).This option disable the preprocessor usage.The default
preprocessor is“cpp -P %s %s -o %s” .

–with-preprocessor_cmd=CMD preprocessor command. The command must have three %s, the first one
will be replaced with the preprocessor options, the second by the source file, the last with the target file. For
example, CMD could be“cpp %s %s > %s” . Don’t forget the “ that avoid the shell interpretation.”

configure also accepts and ignores some other options.

On systems that require unusual options for compilation or linking that the package’sconfigure script does
not know about, you can giveconfigure initial values for variables by setting them in the environment. In
Bourne-compatible shells, you can do that on the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure

On systems that have theenv program, you can do it like this:

env CC=’gcc -traditional’ LIBS=-lposix ./configure

Here are themake variables that you might want to override with environment variables when running
configure .

For these variables, any value given in the environment overrides the value thatconfigure would choose:

Variable: CC C compiler program. The default iscc .

Variable: CFLAGS The default flags used to build the program.

Variable: INSTALL Program to use to install files. The default isinstall if you have it,cp otherwise.

42 Chapter 8. Getting,compiling and installinglambda-flow

For these variables, any value given in the environment is added to the value thatconfigure chooses:

Variable: LIBS Libraries to link with, in the form-lfoo -lbar... .

If you need to do unusual things to compile the package, we encourage you to figure out howconfigure could
check whether to do them, and mail diffs or instructions to the address given in the README so we can include
them in the next release.

8.1.2. building

Typemake to compile the package.

8.1.3. Regression tests

If the package is configured with the–enable-regression option and you want to run the tests, typemake

regression .

The regression test are run with the following command:

$ flow –regress Regress/*.*

And the result should be like this :

/flow/Regress>../src/flow –regress *.*

flow, 0.3 (Thu Jul 11 16:43:58 1996)-(c) Guilhem de Wailly - 1995-1996

sem-001.0 – done

sem-002.1 – done

sem-003.1 – done

sem-004.0 – done

sem-005.2 – done

without any error message.

8.1.4. Installing

Typemake install to install programs, data files, and documentation.

8.1.5. Cleaning

You can remove the program binaries and object files from the source directory by typingmake clean . To also
remove the Makefile(s), the header file containing system-dependent definitions (if the package uses one), and
config.status (all the files thatconfigure created), typemake realclean . If you want to clean the source
tree completely, so that it contains only those files that should be packaged in the archive, issuemake distclean .
If you’ve run configure in a different directory than the source tree, distclean won’t remove your *.o and linked
programs in that directory. If you want to desinstall the program, typemake uninstall .

The fileconfigure.in is used to createconfigure by a program calledautoconf . You only need it if you want
to regenerateconfigure using a newer version ofautoconf .

8.2. Where to get more information on lambda-flow

You can see at the provided documentation issued in three format, postscript, man and html. Some publication
pointers are provided here.

You can send an e-mail togdw@unice.fr .

You can read the WWW page at

http://alto.unice.fr: gdw/pub/lambda-flow

8.3. Notes aboutlambda-flow 43

8.3. Notes aboutlambda-flow

lambda-flow has been run in the following configurations:

• i386-linux-linux-1.2.13

• i386-msdos-msdos-6.2

• sparc-sun-sunos-4.1

• sparc-sun-solaris-2.3

It is a preliminary beta test version. If you have an error, please change the verbiage option to 65535 and the log file
to flow.log . Then recopile yout source file and send to us the source file, theflow.log .

Sincelambda-flow is configured via the GNUautoconf program, it’s not difficult to run it in other operating
systems.

Some configure command line:

i386-linux-linux1.0 configure –enable-regression

–includedir=/usr/local/include

–libdir=/usr/local/lib

–with-gc

sparc-sun-sunos4.1 configure –enable-regression

–includedir=$HOME/usr/include

–libdir=$HOME/usr/lib

–with-gc

–with-slang-lib=slang-sun

i386-msdos-msdos6.2 configure –with-cc=gcc-dos

–enable-regression

–includedir=c:\usr\include

–libdir=c:\usr\lib

–without-gc

–with-slang-lib=slang-dos

–with-regex-o=regex-dos.o

8.4. Porting the program

The main difficulty to portlambda-flow is to port the GC garbage collector.

The own part oflambda-flow is written with one GNU facility, the possibility to define some function inside a
function. This allows to share the function parameters in an easy way. To port this on some traditional c compiler, it
is needed to rewrite these inner function on the top-level,and either add to them some parametersor add some global
variable.

8.5. Obtaining the missing pieces of lambda-flow

Lambda-flow will build without requiring you to get any other software packages, however, you may be interested
in enhancing lambda-flow environment with some of these:

LAMBDA-FLOW author : Guilhem de Wailly

site : ftp://alto.unice.fr/ gdw/flow/flow-src-0.2.tgz

ftp://alto.unice.fr/ gdw/flow/flow-bin-0.2.tgz

GC This implements garbage collection of chunks of memory obtained through (its replacement of) malloc(3).
It works for C, C++, Objective-C, etc.

author : Hans J\"urgen Boehm and Mark Weiser

site : ftp://parcftp.xerox.com:/pub/gc/gc4.3.tar.gz

SLANG slang (pronouncedsssslang) is a powerful stack based interpreter that supports a C-like syntax. It

44 Chapter 8. Getting,compiling and installinglambda-flow

has been designed from the beginning to be easily embedded into a program to make it extensible. slang also
provides a way to quickly develop and debug the application embedding it in a safe and efficient manner.Since
slang resembles C, it is easy to recodeslang procedures in C if the need arises.

author : John E. Davis

site : ftp://space.mit.edu/pub/davis/slang

Regex provides three groups of functions with which you can operate on regular

expressions. One group—the GNU group—is more powerful but not completely

compatible with the other two, namely the POSIX and Berkeley UNIX groups; its

interface was designed specifically for GNU. The other groups have the same

interfaces as do the regular expression functions in POSIX and Berkeley UNIX.

authors : Richard Stallman, Karl Berry,

Kathryn Hargreaves, Jim Blandy,

Joe Arceneaux, David MacKenzie,

Mike Haertel, Charles Hannum

site : ftp://prep.ai.mit

ftp://sunsite.unc.edu

And the GNU C Compiler may be obtained from the following sites:

ASIA: ftp.cs.titech.ac.jp, utsun.s.u-tokyo.ac.jp:/ftpsync/prep,

cair.kaist.ac.kr:/pub/gnu

AUSTRALIA: archie.au:/gnu (archie.oz or archie.oz.au for ACSnet)

AFRICA: ftp.sun.ac.za:/pub/gnu

MIDDLE-EAST: ftp.technion.ac.il:/pub/unsupported/gnu

EUROPE: ftp.cvut.cz:/pub/gnu, irisa.irisa.fr:/pub/gnu,

ftp.univ-lyon1.fr:pub/gnu, ftp.mcc.ac.uk,

unix.hensa.ac.uk:/pub/uunet/systems/gnu,

src.doc.ic.ac.uk:/gnu, ftp.win.tue.nl, ugle.unit.no,

ftp.denet.dk, ftp.informatik.rwth-aachen.de:/pub/gnu,

ftp.informatik.tu-muenchen.de, ftp.eunet.ch,

nic.switch.ch:/mirror/gnu, nic.funet.fi:/pub/gnu, isy.liu.se,

ftp.stacken.kth.se, ftp.luth.se:/pub/unix/gnu, archive.eu.net

CANADA: ftp.cs.ubc.ca:/mirror2/gnu

USA: wuarchive.wustl.edu:/mirrors/gnu, labrea.stanford.edu,

ftp.kpc.com:/pub/mirror/gnu, ftp.cs.widener.edu, uxc.cso.uiuc.edu,

col.hp.com:/mirrors/gnu, ftp.cs.columbia.edu:/archives/gnu/prep,

gatekeeper.dec.com:/pub/GNU, ftp.uu.net:/systems/gnu

8.6. Copyright

Copyright (c) 1995, 1996 Guilhem de Wailly
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy, and
distribute this software and its documentation for any purpose, provided that the above copyright notice and the
following two paragraphs appear in all copies of this software. Permission is not granted to modify this software for
any purpose without submitting such modifications back to the author.

IN NO EVENT SHALL GUILHEM DE WAILLY BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITSDOCUMENTATION,EVEN IF GUILHEM DE WAILLY HASBEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

GUILHEM DE WAILLY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITEDTO,THE IMPLIEDWARRANTIESOF MERCHANTABILITYAND FITNESSFOR A PARTICULAR
PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN AS IS BASIS, AND GUILHEM DE

8.6. Copyright 45

WAILLY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

Index

actor
abstraction 9, 10
alternative 7
application 7
data 6
definition 6
extraction 9
identifier 6
instantiation 10
operator 6
output 8
program 10
stream 7
vector 8

algebra 14
checking 14
comment 14
data 6
data checking 14
initialization in target code 19
integer 18
loading 37
operator 6, 23
regular expression 14, 14
regular expression mode 14
type 14

code production 19
comment 6
criterion 11

calculability 11
closure 11
constancy 12
determinism 11
fix-point equation 11
recurrent equation 7
type checking 12

environment
definition 6
frame 8
free variable 8, 11
hierarchy 8
variable LAMBDA_FLOW_PATH 37

module
compilation 37
declaration 10
definition 9
input 8
instantiation 10
link an output 9

output 8
parameter 9

option 17
algebra 37, 38
analysis only 37
auxiliary file 37
compile only 37
convert source file 37
default file 38
grouping expression 37
libraries files 38
license 37
linear 37
log file 37, 39
max errors 37, 38
output file 37
post-compiler options 37
preprocessor 39
preprocessor options 38
regular expression checker 38
short syntax 38
standard path 37, 38
stopping condition 38
target 38, 38
verbiage 39

regular expression
alternation operator 15
character class operator 17
grouping operator 17
interactive testing 17
interval operator 15
list operator 16
match any character operator 15
match one or more operator 15
match self operator 15
match zero of more operator 15
match zero or one operator 15
range operator 17
repetition operator 15

slang 28
!if 33
andelse 33
array 35
assignement 29
binary operators 30
boolean evaluation 31
break 35
continue 35
control flow 33

46

47

data type 31
do while 34
float 32, 32
for 34
forever 34
function 28
if 33
integer 32, 32
loop 34
orelse 33
return 35
stack operators 36
string 32
switch 34
unary operators 31
variables 28
while 33

target code 19
IO operators 23
algebra assign template 22
algebra data template 22
algebra declare template 22
algebra init template 22
algebra operators template 23
algebra sections 22
alternative template 21
c target 24
command template 20
comment template 21
definition file 19
exit template 21
extension template 20
file format 19
general definition 20
global initialization 19, 19
i386 target 25
identifier template 21
init section 19
init template 21
linear option 20
loop section 19, 19
next section 19
printf template 20
scheme target 25
section templates 22
slang template 20
start section 19
string template 20
templates 20
variable declarations 19
width option 21

