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ABSTRACT

This paper describes A-FLOW, a new functional synchronous
dataflow language for DSP applications. It is independent of
the handled data. It plainly supports the modular design. Its
sound semantics allows proofs of programs and time/memory
determinisms. The target code is dynamically loaded into
the compiler with a target description that is defined with
less than twenty lines of definitions. Due to the static feature
of the solving model, it is possible to implement programs
onto a static parallel architecture.

1 INTRODUCTION

Here, digital signal processing (DSP) applications are limited
to the application based on state model. A state-model is
shown in figure 1.

A state-model applica-
tion has several inputs
and several outputs, re-
spectively ¢ and j, and a
state-vector with k val-
ues. The state-vector is
the memory of the sys-
tem. The outputs are a
function f of the inputs
and of the state-vector.
The state-vector is also a function g of the inputs and the
current state-vector. The functional box encloses true func-
tion, without inner loop. This system is scheduled with three
clocks hi, ha and hg, in this order. Clock h; samples the in-
puts and clock hs sends the outputs. Clock hs copies the
new state-vector values in their location. The mechanism
that handles the clocks is out of the system.

A such state-based application can be easily modeled with
a diagram. DSP designers know the formalism based on the
Z delay operator. A filter conceived with this method is
shown in figure 2.

The filter is a box which can have several inputs and sev-
eral outputs. The nodes are either operations or links, and
lines are data paths. In such a diagram, there is no direct
cycle: cycles can occur only through Z delay operators. This
operator plays the role of a cell of the state-vector in a state-
model. It allows the time to be handled in the diagram. The
filter in figure 2 has only one clock, but it could be conceived
with more that one clock. From this diagram, it is possible
to obtain the transfer-function H(Z) of the filter, and then,
its recurrent equation o(t).
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functional box

, Ny h,
initial values clocks state variables

Figure 1: State model.

Tools used to implement this kind of DSP application must
have several properties. A graphical programming in-
terface is welcome, but complicated applications are often
difficult to understand this way. So, a syntactic program-
ming language is also necessary, with a translation be-
tween the two formalisms. In addition, these programming
environments have to support a modular design of the ap-
plications.

The DSP designer wants

e fo—F to be sure it programs what
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sound semantics, as sim-
ple as possible. Particularly,
the semantics tool has to al-
low proofs of programs.

Generally, speed of DSP
implementations is a strong
constraint. In addition, they are often embarked systems,
which are expected to have zero-defaults. So, the used tools
must allows efficient implementations.

The existing tools are shortly examined (§ 2). Then, our
functional synchronous dataflow (FSD) language is infor-
mally explained (§ 3), and we try to light the differences
between the formalisms cited above. Programs can be ei-
ther solved with a functional abstract machine which gives
the semantics of the language (§ 4) or compiled into several
target code (§ 5). Due to the time/memory determinisms of
the language, programs can be implemented onto a cheap,
simple and static parallel architecture (§ 6). Last, we explain
our future work (§ 7).

T

Figure 2: DSP filter.

2 EXISTING TOOLS

As shown in figure 2, DSP applications are closed to the
dataflow concept. A dataflow program is a diagram with
lines as data paths and boxes as operations. It exists two
methods to run a dataflow program.

The first method to run a dataflow programs is the data-
driven method. When a data is available on each input of
an operator, the operator computes a new data that it puts
on its output. The researches on dataflow parallel computers
started with MILLER and KARP in 1966 [17]. But this kind of
dataflow suffers to the lack of a global semantic description
of the program and the inefficiency of the implementations.

The second method to run a dataflow program is the
demand-driven method. Here, a result is asked to an op-
erator. The operator propagates the demand to its empty



inputs. When all the inputs data are available, the operator
computes a data and it returns it. This kind of dataflow is
closed to the functional programming style [3].

Functional languages [18, 5] have all a valuable prop-
erty: they are built on the mathematically based A-calcul-
us [6, 21]. Functional programming languages can be effi-
ciently implemented onto a classical VON NEUMANN archi-
tecture, which provides low cost specialized DSP processors
and well known programming environments.

The first functional dataflow language is LucID [4]. It is the
first to demonstrate that a dataflow programming style can
replace iteration, with the advantage of the functional prop-
erty. But LUCID contains several features not well adapted to
DSP. Particularly, it is not time/memory deterministic.

The SISAL is introduced to implement general purpose FSD
program onto parallel architecture. But it is not adapted for
DSP for the same reasons than LUCID [13].

LUSTRE and SIGNAL are two FSD languages well adapted
for DSP. Their kernel is based on recurrent clocked equations.
SIGNAL does not define explicitly a root clock while the clocks
in LUSTRE are all defined on a base clock [15, 14].

Our language A-FLOW is a part of a CAD tool chain for im-
plementing DSP application onto parallel architectures [11].
It is more primitive than the languages cited above. It has
less expressions and less concepts: it defines only one tempo-
ral operator, used to built a stream of values. The streams
are updated in a synchronous way, so, the language could be
used for real-time applications.

It provides the alternative construction (if-then-else).
Associated to the stream object, the alternatives could be
used to define some clocks. So, the clock concept is not ex-
plicitly defined in the core language.

The integer algebra is predefined by default. All the other
handled data are dynamically bound to an algebra. This
feature gives to the language a great generality and adapt-
ability: it is defined as a “thing to handle some things”,
without specifying the nature of the handled things, such as
the LANDIN’s language [18].

A-FLOW is a typed language, but its type checking has
less constrains than the languages cited above: it encour-
ages polymorphic abstractions. In addition, it supports a
full lexical scope binding. A-FLOW has a graphical interface
where the program can be drawn as a dataflow graph [8].

3 AMFLOW LANGUAGE

Atoms are the basic expressions of the language. Natural
integers and their associated operators, user’s defined data
and their specific operators and identifiers are atoms.

Users can specify their own algebra built upon their data-
type and relative operators. The integer algebra is defined
by default because some A-FLOW operators use them. The
independence of A\-FLOW with the data gives a great general-
ity to the language. The algebra are implemented according
to the used target code. This feature could be a basis of a
co-design implementation.

Alternative is a choice between two expressions depend-
ing on a condition. It is written: IF cond THEN then ELSE
else, where cond must be evaluated as an integer (0 denotes
the false value).

A-FLOW is a side-effect free language due to its func-
tional feature. So, the clauses of the alternative cannot cre-
ate a side-effect, and their parallelization is possible.

Alternative is the primitive concept of clocks of the lan-
guages cited in section 2. Of course, it is simpler to under-
stand, and its semantic description is trivial.

Application acts on its arguments according to the oper-
ator semantics, given by the algebra. It is written: OPERATOR
(arg-1, ., arg-n). The applications with two argu-
ments can also be written with an infix syntax, such as arg-1
OPERATOR arg-2.

Definition allows identifier-value associations. In the cur-
rent environment (see vector) or in the sub-environments,
this name becomes a synonym of the expression: the lan-
guage is said referentially transparent. A definition is
written: name := value

Stream allows to write in a functional way a recurrent
equation [4]. A stream has two parts: a state which contains
the initial value and a contract for computing the next state
values. It is written: state FOLLOWED-BY contract.

All the streams of the program will be regenerated (the
action that updates the state) in the same time. So, the
A-FLOW streams are synchronous.

The stream construction allows writing a state variable in
a functional way. It handles the time in the language : it
is the A-FLOW translation of the Z-delay operator. All the
applications which can be designed with a state model can
be written with A\-FLOW, that adds some modern language
feature, such as polymorphic abstraction, lexical binding, ...

Vector is a structured object that gathers some expression
in an indexed way. A vector is written:

A vector must have at least one component. It
defines a frame of an environment [1, 2]. All the
definitions it contains are visible from all inner
E;Bt“—“? expressions. Identifiers are statically linked into

an environment, as in the language SCHEME [1].
This static linkage allows efficient compilation [16].

BEGIN
actor_1;

Extraction can read an indexed value inside a module. It
is an explicit functional mechanism for multi-outputs. It
is written: indexed EXTRACT index.

Indexed must refer directly or not to a vector. index can
be either an integer for direct addressing, or an identifier. If
index is an identifier, it must match with an output with
the same name in indexed (see output). In the example
of figure 3, index x in the extraction of the main module
matches with x output of the filter.

Output exports a value for extraction. An output is writ-
ten: name ! value. Notice the outputs of the main module
are outputs of the system.

Abstraction abstracts an actor with some parameters. It
is written: lambda p_1, p-2, ..., pn. actor.

Parameters p_i are identifiers. The parameters of the
main module must have a signature, and they are written
parameter:signature. The parameters of the other abstrac-
tions are untyped, that encourages polymorphic abstraction
definitions. Of course, the operators inside the abstraction
body have to exist for the given arguments.



The free variables of an abstraction are linked in a nat-
ural way with a lexical scope in the environment where they
are defined (such as in language C, and most of the modern
languages). This feature allows to share some global fea-
tures without putting them in the abstraction parameters.
The language LUSTRE which is closed to A-FLOW does not
support free-variables in an abstraction [15].

An instantiation of abstraction is written as an appli-
cation. The instantiation mechanism acts as a macro-
replacement, but it takes into account the variables bindings.
In addition, it does not allow the definition of inconsistent
expression, because recursive instantiations are forbidden.

filter := lambda i. BEGIN The example of A-FLOW pro-
x 'a+b+c+d; A )

a:i=i-b; gram in figure 3 implements the
b := 0 FOLLOWED-BY d; filter of figure 2. There are
c :=a - e; . .
di=c+ e; two modules, filter and main.
o 0 FOLLOWED-BY c; The main module instantiates

;

the filter module with the ar-

MAIN := lambda i:int. BEGIN gument i, the iIlpllt of the Sys-
out ! filter(i) EXTRACT x; tem.

END;

There is only one main model
in a program. The main inputs
have a signature with the form i:int while the inputs of
the other modules are untyped. This feature encourages the
definition of polymorph programs. In this example, filter
does not changes if the number are real. Of course, the
real algebra must be defined and loaded. Thus, it reads the
output of the filter with an X extraction and writes the result
in the main output of the system, named out.

The reader could see that the language is very natural,
and it closed to the Z-formalism generally used. This sim-
plicity is possible because A\-FLOW is built on an accurate
abstract language, the A-matrices.

Figure 3: A-FLOW

4 MFLOW SEMANTICS

A-FLOW is the syntactic interface of a functional abstract
language, dataflow-based, called A-matrices, and its solv-
ing abstract machine [12]. It uses accurate semantics tools,
mathematics-based [19, 20]. Four functional solving opera-
tors define the abstract machine. This kind of abstract ma-
chine cannot be found in languages cited in section 2. This
machine emphases the functional property of the whole
model and allows proofs of results.

Solving an application is a tail-

el := + (02, 08); . .

@8 := + (04, 09); recursive equation that defines a
@9 := + (@6, 05); functional abstract machine. Each
Q@7 := 0 followed-by @6; . .
@6 := - (@2, @7); step of the recursive computation
02 := - (03, 04); corresponds to each instant. This
@3 := @in (0); equation can generate an infinite
@4 := 0 followed-by 05; q g 5 Inimnit
@5 := + (@6, Q7); number of steps. This activity is
@0 := Qout (0, @1);

modeled with two functional opera-
tors: the regeneration operator that
regenerates all the streams states of
the model in a synchronous way and
that returns the new regenerated system, and the evaluation
operator used by the regeneration operator to evaluates the
new stream states. The functional view of the state-variables
is due to the regeneration operator.

Because we want time/memory determinisms, some
systems cannot be solved. So, three criterion functions are
defined. A system that contains free variables (unresolved
links) is said unclosed. A system that contains any fixpoint

Figure 4: Flat-
tened code

equation is said uncalculable because its computation is time-
indeterministic. If the dimension (amount of information
used to describe the system) grows with time, the system is
said unstable. We established in a proved way the relations
between the properties and the corresponding criterion func-
tions. We also proved that if a system has some properties
at initial time, it keeps them during all the others instants.
Solving operators are fully functional, so, the obtained re-
sults are proved ones [10].

In addition, the solving process is static due to the stability
property. Easy parallelism exploitation is permitted by this
strong feature.

5 COMPILING A-FLOW PROGRAMS

The first step of the compilation
process is to convert the syntactic
form in the A-matrices abstract lan-

23‘8; ad7, 2d.8,  onage [12]. This is accomplished
start: with a classical parser [2]. The

main() {
int ad_0, ad_1, ad_2,
ad_3, ad_4, ad_5,

ig(iit; - o second step is to instantiate each
ad_3 = getint(0); abstraction where it is used. This
1ad—4 =0 instantiation acts as a syntac-
oop: . .

adfg = ad_3 - ad_4; tic macro-replacement, but it takes
ad_6 = ad_2 - ad_7; into account the variables bindings
ad_ b = ad_6 + ad_7; .

ad 9 = ad_6 + ad_5; (unlike the ¢ preprocessor). When a
ad_8 = ad 4 + ad_9; program is instantiated, the only re-
ad_1 = ad_2 + ad_8; ined abst ti is th .

ad 0 = putint(0,ad 1); nained abstraction is the main one.
next: It defines the inputs and the out-
ad_7 = ad_6;

ad 3 - getint(0); puts of the sy.stem. .

ad_4 = ad_5; Then, the instantiated program
goto loop; is checked. After a strong type

checking, the program is analyzed
in order to reject the time/memory
indeterministic ones. This analysis is performed according
to the formal methods we have described [12, 10].

After the semantics analysis of the programs, the main
module is flattened. This is performed with a formal and
functional method that is shown to keep the semantics of the
original program. The resulting flattened abstract program
from the example in figure 3 is shown in figure 4; it is a sub-
set of the A-matrices. This code is functional, but it looks
like the classical three addresses code of the internal forms
in most of the compilers [2].

Figure 5: C code

This program uses a sub-
set of the A-matrices abstract
language. It doe not contain
any module and the extrac-
tions are replaced with the ex-
tracted expression.

Because the flattened code
Egé E;usgngsé)‘hi))) is simple, the code produc-
(loop @6 (getint 0) @5)))) tion is easy to implement.
The compiler does not define
statically the target code: a
description of the target is dynamically loaded at compile-
time. A target description is a short file that contains the
specific part in the code production.

The structure of the code clearly appears in the exam-
ple in figure 5: the start part contains the code that gives
the initial value of the streams, the init part initializes the
stream states and the inputs values, the loop part computes
some temporary variables, and finally, the next puts the next
values of the streams and the new inputs values.

(let* )
(let loop ((@7 0)
(@3 (getint 0))
(e4 0))
(let* ((02 (- @3 @4))
(@6 (- 02 Q7))
(@5 (+ @6 @7))
(@9 (+ @6 @5))
(@8 (+ @4 @9))

Figure 6: Scheme code



This organization is the same whatever the considered tar-
get. With another set of definitions, the compiler produces
a purely functional SCHEME code, such as in figure 6.

The nature of the produced code is static, and it is
time/memory deterministic. In addition, the use of formal
method in the most important transformation phase of the
compilation process guarantees the resulting program.

6 PARALLELISM

It is obvious that the resulting code produced by the com-
pilation phase of a A-FLOW program is static. The memory
accesses are known at compile time, and they are invariant.
The variables are once assigned to a value inside the main
loop: before this assignment, they are not used, and after,
they are not changed.

All these properties allow to design a static parallel ar-
chitecture. In this parallel architecture, all the processors
are directly connected to a main bus, itself connected to the
main memory. When a processor does not access to the bus,
it is placed in high impedance (unconnected).

The scheduling of the tasks uses traditional methods [7].
The gain of the model is in the way how the tasks are or-
ganized around a main loop, with single assignment. We
have built a software simulator of this architecture [9], and
designed the parallelizer compiler principles.

7 FUTURE WORK

In order to validate the whole CAD tool chain, we are im-
plementing the G726 norm: it implements an adaptative
differential pulse code modulation (ADPCM) filter for dig-
ital transmission systems. We are expecting to produce an
efficient C program in an automatic way and to parallelize
this implementation.

The CAD tool chain is programmed with a powerful
SCHEME based language that allows fast prototyping. We
plan to rewrite this chain with language C in order to get a
portable and faster tools. In addition, the graphical interface
will be rewritten with the graphical tool kit MOTIF.

8 CONCLUSION

In this short article, we have presented a language designed
for implementing DSP applications in parallel architecture.

The language does not depend on the handled data. This
feature provides a great generality to the language, without a
complicated type construction. The language is very simple,
and it is closed to the Z-formalism.

It is built with an accurate semantic language that al-
lows both proofs of programs and proofs of transformations,
due to its full functional feature. The time/memory deter-
minisms are checked at compile time.

Due to the determinism of the programs, they can be flat-
tened in an intermediate form. Because the resulting pro-
gram is very simple, the code production phase is easy to
implement.

The target code is not statically defined in the compiler.
It is dynamically loaded in a short description file. A new
target description file is easy to define.

So the A-FLow language is very useful because it is inde-
pendent with the data algebra and with the target code, and
is uses all the modern language concepts.

A-FLOW is more primitive than the main FSD languages.
But it seems to be as expressive as them, and simpler to the
DSP designer, because it is closed to the Z-formalism.
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